Home
Class 12
MATHS
For three non-zero vectors vec(a),\vec(b...

For three non-zero vectors `vec(a),\vec(b) " and"vec(c )`, prove that `[(vec(a)-vec(b))\ \ (vec(b)-vec(c))\ \ (vec(c )-vec(a))]=0`

Text Solution

AI Generated Solution

To prove that \([( \vec{a} - \vec{b})\ \ (\vec{b} - \vec{c})\ \ (\vec{c} - \vec{a})] = 0\) for three non-zero vectors \(\vec{a}, \vec{b}, \vec{c}\), we will use the properties of the scalar triple product. ### Step-by-step Solution: 1. **Define the Vectors**: Let \(\vec{u} = \vec{a} - \vec{b}\), \(\vec{v} = \vec{b} - \vec{c}\), and \(\vec{w} = \vec{c} - \vec{a}\). We need to show that \([\vec{u}\ \ \vec{v}\ \ \vec{w}] = 0\). 2. **Express the Scalar Triple Product**: The scalar triple product \([\vec{u}\ \ \vec{v}\ \ \vec{w}]\) can be expressed as: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section B 24B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section C|4 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section B|4 Videos
  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos
  • XII Boards

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|255 Videos

Similar Questions

Explore conceptually related problems

Prove that ( vec a- vec b)dot{( vec b- vec c)xx( vec c- vec a)}=0

Prove that: ( vec a- vec b)*{( vec b- vec c)xx(vec c- vec a)}"=0

Knowledge Check

  • If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

    A
    1
    B
    `(3)/(2)`
    C
    `- (3)/(2)`
    D
    none of these
  • If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

    A
    0
    B
    1
    C
    38
    D
    `-19`
  • Similar Questions

    Explore conceptually related problems

    Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

    Let vec r be a non-zero vector satisfying vec r dot vec a= vec rdot vec b= vec rdot vec c=0 for given non-zero vectors vec a , vec b and vec c dot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

    If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

    If vec( a) , vec( b) , vec( c ) are non coplanar non-zero vectors such that vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) and vec( c ) xx vec( a ) = vec ( b ) , then which of the following is not true

    Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

    If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a