Home
Class 12
MATHS
If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y),...

If `sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y)`, then prove that `(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))`

Text Solution

AI Generated Solution

To prove that \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\) given the equation \(\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section C 28 B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section C 31A|1 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section C|4 Videos
  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos
  • XII Boards

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|255 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

dy/dx + sqrt(((1-y^2)/(1-x^2))) = 0

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6,)

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals