Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that `bar(OP)*bar(OQ)+bar(OR)*bar(OS)=bar(OR)*bar(OP)+bar(OQ)*bar(OS)=bar(OQ)*bar(OR)+bar(OP)*bar(OS)` Then the triangle PQR has S as its

A

centriod

B

circumectre

C

incente

D

orthocenter

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(OP) . vec(OQ) + vec(OR).vec(OS)= vec(OR) -vec(OP)+vec(OQ).vec(OS).`
`=vec(OP).(vec(OQ)-vec(OR))=vec(OS).(vec(OQ)-vec(OR))`
`implies (vec(OP)-vec(OS)).(vec(RQ))=0implies vec(SP).vec(RQ)=0`
`implies vec(SP)botvec(RQ)`
Similarly ,`vec(SR)bot vec(OP) and vec(SQ) botvec(PR).`
hence , S is orthocenter.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Linked comprehesion type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise multiple correct answers type|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

(bar(a)*bar(i))^(2)+(bar(a)*bar(j))^(2)+(bar(a)*bar(k))^(2)=

Evaluate : 2.bar(7)+1.bar(3)

Evaluate 3.bar(2)-0.bar(16)

Evaluate : 1.bar(45)+0.bar(3)

Evaluate : 2.bar(5)-0.bar(35)

Show that points with p.v bar(a)-2bar(b)+3bar(c ),-2bar(a)+3bar(b)-bar(c ),4bar(a)-7bar(b)+7bar(c ) are collinear. It is given that vectors bara,barb,bar c are non-coplanar.

In a regular hexagon ABCDEF, bar(AB) + bar(AC)+bar(AD)+ bar(AE) + bar(AF)=k bar(AD) then k is equal to

In the Boolean algebra bar(A).bar(B) equals

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is