Home
Class 12
MATHS
Let O be the origin and vec(OX) , vec(O...

Let O be the origin and` vec(OX) , vec(OY) , vec(OZ)` be three unit vector in the directions of the sides `vec(QR) , vec(RP),vec(PQ)` respectively , of a triangle PQR.
`|vec(OX)xxvec(OY)|=`

A

sin (P + Q)

B

sin 2R

C

sin (P+R)

D

sin (Q+R)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the modulus of the cross product of the unit vectors \(\vec{OX}\) and \(\vec{OY}\) that are in the directions of the sides of triangle \(PQR\). ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \(\vec{OX}\) be the unit vector in the direction of side \(QR\). - Let \(\vec{OY}\) be the unit vector in the direction of side \(RP\). - Since these are unit vectors, we can express them as: \[ \vec{OX} = \frac{\vec{QR}}{|\vec{QR}|}, \quad \vec{OY} = \frac{\vec{RP}}{|\vec{RP}|} \] 2. **Finding the Angle Between the Vectors**: - The angle \(\theta\) between \(\vec{OX}\) and \(\vec{OY}\) can be determined using the properties of the triangle. The angle between the two vectors corresponds to the exterior angle at vertex \(R\) of triangle \(PQR\). - By the exterior angle theorem, we have: \[ \theta = \angle P + \angle Q \] 3. **Calculating the Cross Product**: - The modulus of the cross product of two vectors is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\phi) \] where \(\phi\) is the angle between the vectors \(\vec{a}\) and \(\vec{b}\). - Applying this to our unit vectors: \[ |\vec{OX} \times \vec{OY}| = |\vec{OX}| |\vec{OY}| \sin(\theta) \] - Since \(\vec{OX}\) and \(\vec{OY}\) are unit vectors, we have: \[ |\vec{OX}| = 1, \quad |\vec{OY}| = 1 \] - Therefore: \[ |\vec{OX} \times \vec{OY}| = 1 \cdot 1 \cdot \sin(\theta) = \sin(\theta) \] 4. **Substituting the Angle**: - We substitute \(\theta\) with \(\angle P + \angle Q\): \[ |\vec{OX} \times \vec{OY}| = \sin(\angle P + \angle Q) \] 5. **Final Result**: - Thus, the modulus of the cross product of the unit vectors \(\vec{OX}\) and \(\vec{OY}\) is: \[ |\vec{OX} \times \vec{OY}| = \sin(P + Q) \] ### Conclusion: The final answer is: \[ |\vec{OX} \times \vec{OY}| = \sin(P + Q) \]

To solve the problem, we need to find the modulus of the cross product of the unit vectors \(\vec{OX}\) and \(\vec{OY}\) that are in the directions of the sides of triangle \(PQR\). ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \(\vec{OX}\) be the unit vector in the direction of side \(QR\). - Let \(\vec{OY}\) be the unit vector in the direction of side \(RP\). - Since these are unit vectors, we can express them as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise MCQ|92 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -2|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let O be the origin, and vector OX,OY,OZ be three unit vectors in the directions of the sides vectors QR,RP, PQ respectively, of a triangle PQR. Vector |vec(OX)=vec(OY)|= (A) sin2R (B) sin(P+R) (C) sin(P+Q) (D) sin(Q+R)

If vec(a) and vec(b) are the unit vectors and theta is the angle between them, then vec(a) + vec(b) is a unit vector if

Knowledge Check

  • If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

    A
    1
    B
    `(3)/(2)`
    C
    `- (3)/(2)`
    D
    none of these
  • If vec(a) and vec(b) are unit vectors, then the angle between vec(a) and vec(b) for sqrt( 3) vec( a) - vec(b) to be a unit vector is

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • Similar Questions

    Explore conceptually related problems

    The unit vector bisecting vec(OY) and vec(OZ) is

    Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

    Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

    vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

    If OAB is a tetrahedron with edges and hatp, hatq, hatr are unit vectors along bisectors of vec(OA), vec(OB):vec(OB), vec(OC):vec(OC), vec(OA) respectively and hata=(vec(OA))/(|vec(OA)|), vecb=(vec(OB))/(|vec(OB)|), vec c= (vec(OC))/(|vec(OC)|) , then :

    Let vec(p),vec(q),vec(r) be three unit vectors such that vec(p)xxvec(q)=vec(r) . If vec(a) is any vector such that [vec(a)vec(q)vec(r )]=1,[vec(a)vec(r)vec(p )]=2 , and [vec(a)vec(p)vec(q )]=3 , then vec(a)=