Home
Class 12
MATHS
Solve (x(3-4x)(x+1))/(2x-5)lt 0...

Solve `(x(3-4x)(x+1))/(2x-5)lt 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{x(3-4x)(x+1)}{2x-5} < 0\), we will follow these steps: ### Step 1: Identify the critical points We need to find the values of \(x\) that make the numerator and denominator equal to zero. 1. **Numerator:** - \(x = 0\) - \(3 - 4x = 0 \Rightarrow 4x = 3 \Rightarrow x = \frac{3}{4}\) - \(x + 1 = 0 \Rightarrow x = -1\) 2. **Denominator:** - \(2x - 5 = 0 \Rightarrow 2x = 5 \Rightarrow x = \frac{5}{2}\) Thus, the critical points are \(x = -1\), \(x = 0\), \(x = \frac{3}{4}\), and \(x = \frac{5}{2}\). ### Step 2: Create a number line We will plot the critical points on a number line: -1, 0, \(\frac{3}{4}\), \(\frac{5}{2}\) ### Step 3: Test intervals We will test the sign of the expression in each interval created by these critical points: 1. **Interval \((-∞, -1)\)**: Choose \(x = -2\) \[ \frac{-2(3 - 4(-2))(-2 + 1)}{2(-2) - 5} = \frac{-2(3 + 8)(-1)}{-4 - 5} = \frac{-2 \cdot 11 \cdot -1}{-9} > 0 \] 2. **Interval \((-1, 0)\)**: Choose \(x = -0.5\) \[ \frac{-0.5(3 - 4(-0.5))(-0.5 + 1)}{2(-0.5) - 5} = \frac{-0.5(3 + 2)(0.5)}{-1 - 5} = \frac{-0.5 \cdot 5 \cdot 0.5}{-6} > 0 \] 3. **Interval \((0, \frac{3}{4})\)**: Choose \(x = 0.5\) \[ \frac{0.5(3 - 4(0.5))(0.5 + 1)}{2(0.5) - 5} = \frac{0.5(3 - 2)(1.5)}{1 - 5} = \frac{0.5 \cdot 1 \cdot 1.5}{-4} < 0 \] 4. **Interval \((\frac{3}{4}, \frac{5}{2})\)**: Choose \(x = 1\) \[ \frac{1(3 - 4(1))(1 + 1)}{2(1) - 5} = \frac{1(3 - 4)(2)}{2 - 5} = \frac{1 \cdot -1 \cdot 2}{-3} > 0 \] 5. **Interval \((\frac{5}{2}, ∞)\)**: Choose \(x = 3\) \[ \frac{3(3 - 4(3))(3 + 1)}{2(3) - 5} = \frac{3(3 - 12)(4)}{6 - 5} = \frac{3 \cdot -9 \cdot 4}{1} < 0 \] ### Step 4: Determine the solution set The expression is negative in the intervals: - \((0, \frac{3}{4})\) - \((\frac{5}{2}, ∞)\) ### Step 5: Combine the intervals The solution to the inequality \(\frac{x(3-4x)(x+1)}{2x-5} < 0\) is: \[ x \in (0, \frac{3}{4}) \cup (\frac{5}{2}, \infty) \] ### Final Answer \[ x \in (0, \frac{3}{4}) \cup (\frac{5}{2}, \infty) \]

To solve the inequality \(\frac{x(3-4x)(x+1)}{2x-5} < 0\), we will follow these steps: ### Step 1: Identify the critical points We need to find the values of \(x\) that make the numerator and denominator equal to zero. 1. **Numerator:** - \(x = 0\) - \(3 - 4x = 0 \Rightarrow 4x = 3 \Rightarrow x = \frac{3}{4}\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.2|8 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

Solve : (|x-1|-3)(|x+2)-5) lt 0 .

Solve log_(2).(x-4)/(2x+5) lt 1 .

Solve (x^3-4x)sqrt(x^2-1)=0.

Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-1)gt0.

Solve: x(e^x-1)(x+2)(x-3)^2lt=0.

Solve (x^2-4)sqrt(x^2 -1) lt 0.

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve sqrt(x-2)(x^2-4x-5)=0.

Solve sqrt(x-2)(x^2-4x-5)=0.