Home
Class 12
MATHS
Number of integral value(s) of lambda fo...

Number of integral value(s) of `lambda` for which vectors `x^(2)hati-hatj+xhatk, (lambda-1)hati-2lambdahatj-hatk` and `hati-hatj+hatk`, in the order form right-handed system `AA x` `in`R, is
(a) 0 (b) 2 (c) 4 (d) 6

A

0

B

2

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of integral values of \( \lambda \) for which the vectors \( \mathbf{a} = x^2 \hat{i} - \hat{j} + x \hat{k} \), \( \mathbf{b} = (\lambda - 1) \hat{i} - 2\lambda \hat{j} - \hat{k} \), and \( \mathbf{c} = \hat{i} - \hat{j} + \hat{k} \) form a right-handed system, we need to calculate the scalar triple product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) and ensure that it is greater than zero. ### Step 1: Set up the vectors We have: - \( \mathbf{a} = x^2 \hat{i} - \hat{j} + x \hat{k} \) - \( \mathbf{b} = (\lambda - 1) \hat{i} - 2\lambda \hat{j} - \hat{k} \) - \( \mathbf{c} = \hat{i} - \hat{j} + \hat{k} \) ### Step 2: Calculate the cross product \( \mathbf{b} \times \mathbf{c} \) To find \( \mathbf{b} \times \mathbf{c} \), we can use the determinant of a matrix formed by the unit vectors and the components of \( \mathbf{b} \) and \( \mathbf{c} \): \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \lambda - 1 & -2\lambda & -1 \\ 1 & -1 & 1 \end{vmatrix} \] Calculating this determinant: \[ \mathbf{b} \times \mathbf{c} = \hat{i} \begin{vmatrix} -2\lambda & -1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} \lambda - 1 & -1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} \lambda - 1 & -2\lambda \\ 1 & -1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -2\lambda & -1 \\ -1 & 1 \end{vmatrix} = (-2\lambda)(1) - (-1)(-1) = -2\lambda - 1 \) 2. \( \begin{vmatrix} \lambda - 1 & -1 \\ 1 & 1 \end{vmatrix} = (\lambda - 1)(1) - (-1)(1) = \lambda - 1 + 1 = \lambda \) 3. \( \begin{vmatrix} \lambda - 1 & -2\lambda \\ 1 & -1 \end{vmatrix} = (\lambda - 1)(-1) - (-2\lambda)(1) = -\lambda + 1 + 2\lambda = \lambda + 1 \) Combining these results, we have: \[ \mathbf{b} \times \mathbf{c} = (-2\lambda - 1) \hat{i} - \lambda \hat{j} + (\lambda + 1) \hat{k} \] ### Step 3: Calculate the dot product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) Now we compute the dot product: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (x^2 \hat{i} - \hat{j} + x \hat{k}) \cdot [(-2\lambda - 1) \hat{i} - \lambda \hat{j} + (\lambda + 1) \hat{k}] \] Calculating this gives: \[ = x^2(-2\lambda - 1) + (-1)(-\lambda) + x(\lambda + 1) \] Simplifying this: \[ = -2\lambda x^2 - x^2 + \lambda + x(\lambda + 1) = -2\lambda x^2 - x^2 + \lambda + \lambda x + x \] Combining like terms: \[ = -2\lambda x^2 + (\lambda + 1)x + \lambda \] ### Step 4: Set the scalar triple product greater than zero We need: \[ -2\lambda x^2 + (\lambda + 1)x + \lambda > 0 \] ### Step 5: Analyze the quadratic inequality This is a quadratic in \( x \). For the quadratic to be positive, we need to consider the conditions on \( \lambda \): 1. The coefficient of \( x^2 \) must be negative: \( -2\lambda < 0 \Rightarrow \lambda > 0 \). 2. The discriminant must be positive for the quadratic to have real roots: \[ D = (\lambda + 1)^2 - 4(-2\lambda)(\lambda) > 0 \] Calculating the discriminant: \[ D = (\lambda + 1)^2 + 8\lambda^2 = 9\lambda^2 + 2\lambda + 1 > 0 \] This is always positive since it is a perfect square. ### Step 6: Combine conditions From the conditions derived: - \( \lambda > 0 \) ### Step 7: Find integral values The integral values of \( \lambda \) satisfying \( \lambda > 0 \) are \( 1, 2, 3, \ldots \). However, we need to check if there are any upper bounds based on the original conditions. Since the quadratic must be positive for all \( x \), we conclude that there are no upper bounds on \( \lambda \). ### Conclusion Thus, the number of integral values of \( \lambda \) for which the vectors form a right-handed system is infinite. ### Final Answer (a) 0

To solve the problem of finding the number of integral values of \( \lambda \) for which the vectors \( \mathbf{a} = x^2 \hat{i} - \hat{j} + x \hat{k} \), \( \mathbf{b} = (\lambda - 1) \hat{i} - 2\lambda \hat{j} - \hat{k} \), and \( \mathbf{c} = \hat{i} - \hat{j} + \hat{k} \) form a right-handed system, we need to calculate the scalar triple product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) and ensure that it is greater than zero. ### Step 1: Set up the vectors We have: - \( \mathbf{a} = x^2 \hat{i} - \hat{j} + x \hat{k} \) - \( \mathbf{b} = (\lambda - 1) \hat{i} - 2\lambda \hat{j} - \hat{k} \) - \( \mathbf{c} = \hat{i} - \hat{j} + \hat{k} \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

The number of real values of a for which the vectors hati+2hatj+hatk, ahati+hatj+2hatk and hati+2hatj+ahatk are coplanar is

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Find the value of lambda for which the four points with position vectors 6hati-7hatj, 16hati-19hatj, lambdahatj-6hatk and 2hati-5hatj+10hatk are coplanar.

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Show that vectors 3hati-2hatj+2hatk,hati-3hatj+4hatk and 2hati-hatj-2hatk form a right angled triangle

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hati+hatj-4hatk form a right angled triangle.

Vectors 5hati+yhatj+hatk,2hati+2hatj-2hatk and -hati+2hatj+2hatk are coplaner then find the value of y.