Home
Class 12
MATHS
If |x^2-7|le 9 then find the values of ...

If `|x^2-7|le 9 ` then find the values of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x^2 - 7| \leq 9 \), we will follow these steps: ### Step 1: Remove the absolute value The expression \( |x^2 - 7| \leq 9 \) can be rewritten as two separate inequalities: \[ -9 \leq x^2 - 7 \leq 9 \] ### Step 2: Split into two inequalities This gives us two inequalities to solve: 1. \( x^2 - 7 \geq -9 \) 2. \( x^2 - 7 \leq 9 \) ### Step 3: Solve the first inequality For the first inequality: \[ x^2 - 7 \geq -9 \] Adding 7 to both sides: \[ x^2 \geq -2 \] Since \( x^2 \) is always non-negative, this inequality is always true for all real numbers \( x \). ### Step 4: Solve the second inequality For the second inequality: \[ x^2 - 7 \leq 9 \] Adding 7 to both sides: \[ x^2 \leq 16 \] ### Step 5: Find the values of \( x \) Taking the square root of both sides: \[ -\sqrt{16} \leq x \leq \sqrt{16} \] This simplifies to: \[ -4 \leq x \leq 4 \] ### Conclusion Thus, the solution set for \( x \) is: \[ x \in [-4, 4] \]

To solve the inequality \( |x^2 - 7| \leq 9 \), we will follow these steps: ### Step 1: Remove the absolute value The expression \( |x^2 - 7| \leq 9 \) can be rewritten as two separate inequalities: \[ -9 \leq x^2 - 7 \leq 9 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise EXERCISES|30 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If 2 le |x| le 5 , then find the values of x from the graph of y = |x| .

If |x+2| le 9 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If x-y=7\ a n d\ x y=9, find the value of x^2+y^2

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

If 3-((x^(2))/(12))lef(x)le3+((x^(3))/(9)) in the neighborhood of x=0, then find the value of lim_(xto0) f(x).

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|

If 3x-7y=10\ and x y=-1, find the value of 9x^2+49 y^2

In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25 = (3x + 5)^(2)

In each of the following find the value of 'a' : (i) 4x^(2)+ax+9=(2x+3)^(2) (ii) 9x^(2)+(7a-5)x+25=(3x+5)^(2)