Home
Class 12
MATHS
Evaluate lim(x to 0) (tan(sgn(x)))/(sgn(...

Evaluate `lim_(x to 0) (tan(sgn(x)))/(sgn(x))` if exists.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\tan(\text{sgn}(x))}{\text{sgn}(x)} \), we will analyze the left-hand limit and the right-hand limit separately. ### Step 1: Understand the Signum Function The signum function, denoted as \(\text{sgn}(x)\), is defined as: - \(\text{sgn}(x) = 1\) if \(x > 0\) - \(\text{sgn}(x) = 0\) if \(x = 0\) - \(\text{sgn}(x) = -1\) if \(x < 0\) ### Step 2: Evaluate the Left-Hand Limit We first evaluate the left-hand limit as \(x\) approaches \(0\) from the negative side: \[ \lim_{x \to 0^-} \frac{\tan(\text{sgn}(x))}{\text{sgn}(x)} \] For \(x < 0\), \(\text{sgn}(x) = -1\). Therefore, we have: \[ \lim_{x \to 0^-} \frac{\tan(-1)}{-1} \] This simplifies to: \[ \frac{\tan(-1)}{-1} = -\tan(-1) = \tan(1) \] ### Step 3: Evaluate the Right-Hand Limit Next, we evaluate the right-hand limit as \(x\) approaches \(0\) from the positive side: \[ \lim_{x \to 0^+} \frac{\tan(\text{sgn}(x))}{\text{sgn}(x)} \] For \(x > 0\), \(\text{sgn}(x) = 1\). Therefore, we have: \[ \lim_{x \to 0^+} \frac{\tan(1)}{1} = \tan(1) \] ### Step 4: Compare the Left-Hand and Right-Hand Limits Now we compare the two limits: - Left-hand limit: \(\tan(1)\) - Right-hand limit: \(\tan(1)\) Since both limits are equal, we conclude that: \[ \lim_{x \to 0} \frac{\tan(\text{sgn}(x))}{\text{sgn}(x)} = \tan(1) \] ### Final Result Thus, the limit exists and is given by: \[ \lim_{x \to 0} \frac{\tan(\text{sgn}(x))}{\text{sgn}(x)} = \tan(1) \]

To evaluate the limit \( \lim_{x \to 0} \frac{\tan(\text{sgn}(x))}{\text{sgn}(x)} \), we will analyze the left-hand limit and the right-hand limit separately. ### Step 1: Understand the Signum Function The signum function, denoted as \(\text{sgn}(x)\), is defined as: - \(\text{sgn}(x) = 1\) if \(x > 0\) - \(\text{sgn}(x) = 0\) if \(x = 0\) - \(\text{sgn}(x) = -1\) if \(x < 0\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (tan 5x)/(2x)

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate: lim_(x to 0) (sin x)/(tan x)

Evaluate lim_(x to 0) (log_(tan^(2)x)(tan^(2)2x).

Evaluate lim_(x-> 0) (tan3x-2x)/(3x- sin^2 x)

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

Evaluate, lim_(xto0) (sin2x+3x)/(2x+tan3x) .

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

Evaluate: lim_(x->0)(tan2x-x)/(3x-sinx)