Home
Class 12
MATHS
Evaluate lim(xto1) ((2x-3)(sqrt(x)-1))/(...

Evaluate `lim_(xto1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2+x-3}, \] we will follow these steps: ### Step 1: Substitute \( x = 1 \) First, let's substitute \( x = 1 \) into the expression to check if we get an indeterminate form: \[ \text{Numerator: } (2(1)-3)(\sqrt{1}-1) = (2-3)(1-1) = (-1)(0) = 0. \] \[ \text{Denominator: } 2(1)^2 + 1 - 3 = 2 + 1 - 3 = 0. \] Since both the numerator and denominator evaluate to 0, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the Denominator Next, we need to factor the denominator \( 2x^2 + x - 3 \). We can use the quadratic formula to find the roots: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 24}}{4} = \frac{-1 \pm 5}{4}. \] This gives us the roots: \[ x = 1 \quad \text{and} \quad x = -\frac{3}{2}. \] Thus, we can factor the denominator as: \[ 2x^2 + x - 3 = 2(x - 1)(x + \frac{3}{2}). \] ### Step 3: Rewrite the Limit Expression Now we can rewrite the limit expression: \[ \lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2(x - 1)(x + \frac{3}{2})}. \] ### Step 4: Simplify the Numerator Next, we notice that \( \sqrt{x} - 1 \) can be rewritten using the difference of squares: \[ \sqrt{x} - 1 = \frac{x - 1}{\sqrt{x} + 1}. \] Substituting this back into the limit gives: \[ \lim_{x \to 1} \frac{(2x-3) \cdot \frac{x - 1}{\sqrt{x} + 1}}{2(x - 1)(x + \frac{3}{2})}. \] ### Step 5: Cancel Common Factors Now we can cancel \( (x - 1) \) from the numerator and denominator: \[ \lim_{x \to 1} \frac{(2x-3)}{2(\sqrt{x} + 1)(x + \frac{3}{2})}. \] ### Step 6: Substitute \( x = 1 \) Again Now we substitute \( x = 1 \): \[ 2(1) - 3 = -1, \] \[ 2(\sqrt{1} + 1)(1 + \frac{3}{2}) = 2(1 + 1)(1 + 1.5) = 2 \cdot 2 \cdot 2.5 = 10. \] ### Final Result Thus, the limit evaluates to: \[ \frac{-1}{10} = -\frac{1}{10}. \] So, the final answer is: \[ \boxed{-\frac{1}{10}}. \]

To evaluate the limit \[ \lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2+x-3}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xrarr1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3)

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate the limit: lim_(x->1)((2x-3)(sqrt(x)-1))/(2x^2)

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(xto1) (x^(4)-sqrt(x))/(sqrt(x)-1) .

Evaluate the following limits : Lim_( x to 1) ((2x-3)(x-1))/(2x^(2)+x-3)

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).