Home
Class 12
MATHS
If |f(x)|lex^(2), then prove that lim(xt...

If `|f(x)|lex^(2),` then prove that `lim_(xto0) (f(x))/(x)=0.`

Text Solution

AI Generated Solution

To prove that \(\lim_{x \to 0} \frac{f(x)}{x} = 0\) given that \(|f(x)| \leq x^2\), we can follow these steps: ### Step 1: Start with the given inequality We know that: \[ |f(x)| \leq x^2 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Given, lim_(xto0) (sin3x)/(sin7x) .

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))