Home
Class 12
MATHS
Evaluate lim(xto0) {(sinx-x+(x^(3))/(6))...

Evaluate `lim_(xto0) {(sinx-x+(x^(3))/(6))/(x^(5))}.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}, \] we can follow these steps: ### Step 1: Identify the form of the limit When we substitute \(x = 0\) into the expression, we get: \[ \sin(0) - 0 + \frac{0^3}{6} = 0 - 0 + 0 = 0, \] and the denominator \(x^5\) also approaches \(0\). Thus, we have a \( \frac{0}{0} \) indeterminate form. **Hint:** Check the value of the numerator and denominator as \(x\) approaches 0 to confirm the indeterminate form. ### Step 2: Use the Taylor series expansion for \(\sin x\) The Taylor series expansion for \(\sin x\) around \(x = 0\) is: \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \cdots \] Substituting this into our limit gives: \[ \sin x - x + \frac{x^3}{6} = \left(x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots\right) - x + \frac{x^3}{6}. \] **Hint:** Remember the Taylor series expansion for \(\sin x\) to simplify the expression. ### Step 3: Simplify the expression The terms \(x\) and \(-x\) cancel out, and we are left with: \[ \sin x - x + \frac{x^3}{6} = \frac{x^5}{120} - \frac{x^7}{5040} + \cdots \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{\frac{x^5}{120} - \frac{x^7}{5040} + \cdots}{x^5}. \] **Hint:** Combine like terms and factor out \(x^5\) from the numerator. ### Step 4: Factor out \(x^5\) Now we can factor out \(x^5\) from the numerator: \[ \lim_{x \to 0} \left( \frac{1}{120} - \frac{x^2}{5040} + \cdots \right). \] **Hint:** After factoring, observe how the limit behaves as \(x\) approaches 0. ### Step 5: Evaluate the limit As \(x\) approaches \(0\), all terms involving \(x\) will vanish, leaving us with: \[ \frac{1}{120}. \] Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5} = \frac{1}{120}. \] **Final Answer:** \[ \frac{1}{120}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}, \] we can follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate, lim_(xto0) (sinx-2sin3x+sin5x)/(x)

Evaluate : lim_(xto0) (a^(x)-b^(x))/x