Home
Class 12
MATHS
lim(xto0) [(sin(sgn(x)))/((sgn(x)))], wh...

`lim_(xto0) [(sin(sgn(x)))/((sgn(x)))],` where `[.]` denotes the greatest integer function, is equal to

A

`^(2n)p_(n)`

B

`^(2n)C_(n)`

C

`(2n)!`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} \right) \), where \(\text{sgn}(x)\) is the signum function and \([.]\) denotes the greatest integer function, we will analyze the behavior of the function as \(x\) approaches 0 from both the right and the left. ### Step 1: Right-hand limit as \(x \to 0^+\) - When \(x\) approaches 0 from the right (\(x \to 0^+\)), \(\text{sgn}(x) = 1\). - Therefore, we can substitute this into our limit: \[ \lim_{x \to 0^+} \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} = \frac{\sin(1)}{1} \] - The value of \(\sin(1)\) is approximately \(0.8415\) (in radians). ### Step 2: Greatest integer function - Since \(\sin(1) \approx 0.8415\), we need to evaluate the greatest integer function: \[ [\sin(1)] = [0.8415] = 0 \] ### Step 3: Left-hand limit as \(x \to 0^-\) - When \(x\) approaches 0 from the left (\(x \to 0^-\)), \(\text{sgn}(x) = -1\). - Thus, we can substitute this into our limit: \[ \lim_{x \to 0^-} \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} = \frac{\sin(-1)}{-1} \] - We know that \(\sin(-1) = -\sin(1)\), so: \[ \frac{-\sin(1)}{-1} = \sin(1) \] - Again, \(\sin(1) \approx 0.8415\). ### Step 4: Greatest integer function for left-hand limit - Similar to the right-hand limit, we evaluate the greatest integer function: \[ [\sin(1)] = [0.8415] = 0 \] ### Step 5: Conclusion - Since both the right-hand limit and left-hand limit yield the same result: \[ \lim_{x \to 0^+} \left( \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} \right) = 0 \] \[ \lim_{x \to 0^-} \left( \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} \right) = 0 \] - Therefore, the overall limit is: \[ \lim_{x \to 0} \left( \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} \right) = 0 \] ### Final Answer: \[ \lim_{x \to 0} \left( \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} \right) = 0 \]

To solve the limit \( \lim_{x \to 0} \left( \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} \right) \), where \(\text{sgn}(x)\) is the signum function and \([.]\) denotes the greatest integer function, we will analyze the behavior of the function as \(x\) approaches 0 from both the right and the left. ### Step 1: Right-hand limit as \(x \to 0^+\) - When \(x\) approaches 0 from the right (\(x \to 0^+\)), \(\text{sgn}(x) = 1\). - Therefore, we can substitute this into our limit: \[ \lim_{x \to 0^+} \frac{\sin(\text{sgn}(x))}{\text{sgn}(x)} = \frac{\sin(1)}{1} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(x->0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest i...

    Text Solution

    |

  2. Let lim(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer....

    Text Solution

    |

  3. lim(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greate...

    Text Solution

    |

  4. The value of the limit lim(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt...

    Text Solution

    |

  5. If lim(xtoa) {(f(x))/(g(x))} exists, then which one of the following c...

    Text Solution

    |

  6. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  7. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  8. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  9. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  10. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  11. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  12. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  13. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  14. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  15. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  16. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  17. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  18. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  19. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  20. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |