Home
Class 12
MATHS
Let f :RtoR be a positive, increasing fu...

Let `f :RtoR` be a positive, increasing function with
`lim_(xtooo) (f(3x))/(f(x))=1`. Then `lim_(xtooo) (f(2x))/(f(x))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to \infty} \frac{f(2x)}{f(x)} \] Given that: \[ \lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1 \] ### Step-by-step Solution: 1. **Understanding the properties of the function**: - We know that \( f \) is a positive and increasing function. This means that for any \( x \), \( f(2x) > f(x) \) and \( f(3x) > f(2x) \). 2. **Setting up inequalities**: - Since \( f \) is increasing, we can establish the following inequalities: \[ f(x) < f(2x) < f(3x) \] - Dividing through by \( f(x) \) (which is positive), we have: \[ 1 < \frac{f(2x)}{f(x)} < \frac{f(3x)}{f(x)} \] 3. **Applying the limit**: - Taking the limit as \( x \to \infty \): \[ \lim_{x \to \infty} 1 < \lim_{x \to \infty} \frac{f(2x)}{f(x)} < \lim_{x \to \infty} \frac{f(3x)}{f(x)} \] - We know from the problem statement that: \[ \lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1 \] - Therefore, we can rewrite our limit expression: \[ 1 < \lim_{x \to \infty} \frac{f(2x)}{f(x)} < 1 \] 4. **Concluding the limit**: - The only value that satisfies \( 1 < L < 1 \) is \( L = 1 \). - Thus, we conclude: \[ \lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1 \] ### Final Answer: \[ \lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1 \]

To solve the problem, we need to find the limit: \[ \lim_{x \to \infty} \frac{f(2x)}{f(x)} \] Given that: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

Evaluate lim_(xtooo)(1+2/x)^(x)

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Let f(x) be a function such that ("lim")_(xvec0)(f(x))/x=1 and ("lim")_(xvec0)(x(1+acosx)-bsinx)/((f(x))^3)=1 , then b-3a is equal to

If lim_(xtooo) f(x) exists and is finite and nonzero and if lim_(xtooo) {f(x)+(3f(x)-1)/(f^(2)(x))}=3 , then the value of lim_(xtooo) f(x)" is " _______.