Home
Class 12
MATHS
If f: RvecR is defined by f(x)=[x-3]+|x-...

If `f: RvecR` is defined by `f(x)=[x-3]+|x-4|` for `x in R ,` then `(lim)_(xvec3)f(x)` is equal to (where [.] represents the greatest integer function) a. b. c. d. -1

A

`-2`

B

`-1`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

Given that,
`f(x)=[x-3]+[x-4]`
`therefore" "underset(xrarr3^(+))limf(x)=underset(xrarr3^(-))lim([x-3]+[x-4])`
`=underset(hrarr0)lim([3-h-3]+|3-h-4|)`
`=underset(hrarr0)lim([-h]+1h)`
`=-1+1+0=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f:R->R is defined by f(x)=[x−3]+|x−4| for x in R , then lim_(x->3) f(x) is equal to (where [.] represents the greatest integer function)

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

Let g(x)=1+x-[x]a n df(x)={-1, x 0 . Then for all x ,f(g(x)) is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) f(x) (d) g(x)

Let g(x)=1+x-[x] and f(x)={ -1,x 0. Then for all x, f(g(x)) is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) f(x) (d) g(x)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.