Home
Class 12
MATHS
If lim(xto0) [1+xln(1+b^(2))]^(1//x)=2bs...

If `lim_(xto0) [1+xln(1+b^(2))]^(1//x)=2bsin^(2)theta,bgt0," and "thetain(-pi,pi],` then the value of `theta` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression given in the limit: \[ \lim_{x \to 0} \left[1 + x \ln(1 + b^2)\right]^{\frac{1}{x}} = 2b \sin^2 \theta \] ### Step 1: Recognize the form of the limit As \( x \to 0 \), the expression \( 1 + x \ln(1 + b^2) \) approaches \( 1 \), and we have a limit of the form \( 1^{\infty} \). To evaluate this limit, we can use the exponential limit property: \[ \lim_{x \to 0} \left[1 + f(x)\right]^{g(x)} = e^{\lim_{x \to 0} f(x) g(x)} \] where \( f(x) = x \ln(1 + b^2) \) and \( g(x) = \frac{1}{x} \). ### Step 2: Calculate \( f(x) g(x) \) We have: \[ f(x) g(x) = x \ln(1 + b^2) \cdot \frac{1}{x} = \ln(1 + b^2) \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \left[1 + x \ln(1 + b^2)\right]^{\frac{1}{x}} = e^{\ln(1 + b^2)} = 1 + b^2 \] ### Step 3: Set the limit equal to the right side We equate the limit to the right-hand side of the original equation: \[ 1 + b^2 = 2b \sin^2 \theta \] ### Step 4: Rearranging the equation Rearranging gives us: \[ b^2 - 2b \sin^2 \theta + 1 = 0 \] ### Step 5: Solve the quadratic equation This is a quadratic equation in terms of \( b \). The discriminant must be non-negative for real solutions: \[ D = (2 \sin^2 \theta)^2 - 4 \cdot 1 \cdot 1 = 4 \sin^4 \theta - 4 \] Setting the discriminant \( D \geq 0 \): \[ 4(\sin^4 \theta - 1) \geq 0 \] This simplifies to: \[ \sin^4 \theta - 1 \geq 0 \] ### Step 6: Factor the inequality Factoring gives us: \[ (\sin^2 \theta - 1)(\sin^2 \theta + 1) \geq 0 \] Since \( \sin^2 \theta + 1 > 0 \) for all \( \theta \), we focus on: \[ \sin^2 \theta - 1 \geq 0 \] This implies: \[ \sin^2 \theta \geq 1 \] ### Step 7: Find values of \( \theta \) The only values of \( \theta \) that satisfy \( \sin^2 \theta = 1 \) are: \[ \theta = \frac{\pi}{2} \quad \text{or} \quad \theta = -\frac{\pi}{2} \] ### Conclusion Thus, the values of \( \theta \) that satisfy the original limit condition are: \[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = -\frac{\pi}{2} \]

To solve the limit problem, we start with the expression given in the limit: \[ \lim_{x \to 0} \left[1 + x \ln(1 + b^2)\right]^{\frac{1}{x}} = 2b \sin^2 \theta \] ### Step 1: Recognize the form of the limit As \( x \to 0 \), the expression \( 1 + x \ln(1 + b^2) \) approaches \( 1 \), and we have a limit of the form \( 1^{\infty} \). To evaluate this limit, we can use the exponential limit property: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0 ,where theta in (-pi,pi], then the value of theta is (a) +-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2

If lim_(xto0) (1+ax+bx^(2))^(2//x)=e^(3) , then find the values of a and b.

Knowledge Check

  • If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

    A
    `(1)/(6)`
    B
    `(1)/(3)`
    C
    `(1)/(2)`
    D
    19
  • If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

    A
    `0.22`
    B
    `0.25`
    C
    `0.45`
    D
    `0.50`
  • Similar Questions

    Explore conceptually related problems

    Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

    Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

    If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

    Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

    Evaluate lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)

    Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)