Home
Class 12
MATHS
Evaluate the following integrals using l...

Evaluate the following integrals using limit of sum.
`int_(a)^(b)cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{a}^{b} \cos x \, dx \) using the limit of sum, we will follow these steps: ### Step 1: Set up the limit of sum We start with the definition of the definite integral using the limit of sums. The integral can be expressed as: \[ \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n} \] For our case, \( f(x) = \cos x \). ### Step 2: Define \( \Delta x \) Let \( \Delta x = \frac{b-a}{n} \). Then, we can rewrite the sum: \[ \int_{a}^{b} \cos x \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} \cos\left(a + i \cdot \Delta x\right) \cdot \Delta x \] ### Step 3: Substitute into the sum Substituting \( \Delta x \) into the sum gives: \[ \int_{a}^{b} \cos x \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} \cos\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n} \] ### Step 4: Evaluate the sum Now, we can express the sum: \[ \sum_{i=0}^{n-1} \cos\left(a + i \cdot \frac{b-a}{n}\right) \] This can be approximated using the formula for the sum of cosines. The sum can be rewritten as: \[ \sum_{i=0}^{n-1} \cos\left(a + i \cdot \Delta x\right) \approx n \cdot \frac{\sin\left(\frac{(b-a)}{2}\right)}{\frac{(b-a)}{2}} \cdot \cos\left(a + \frac{(b-a)}{2}\right) \] ### Step 5: Take the limit as \( n \to \infty \) Taking the limit as \( n \to \infty \), we have: \[ \lim_{n \to \infty} \frac{(b-a)}{n} \cdot n \cdot \frac{\sin\left(\frac{(b-a)}{2}\right)}{\frac{(b-a)}{2}} \cdot \cos\left(a + \frac{(b-a)}{2}\right) \] This simplifies to: \[ (b-a) \cdot \cos\left(\frac{a+b}{2}\right) \] ### Step 6: Final expression Thus, the final result for the integral is: \[ \int_{a}^{b} \cos x \, dx = \sin b - \sin a \]

To evaluate the integral \( \int_{a}^{b} \cos x \, dx \) using the limit of sum, we will follow these steps: ### Step 1: Set up the limit of sum We start with the definition of the definite integral using the limit of sums. The integral can be expressed as: \[ \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n} \] For our case, \( f(x) = \cos x \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sum: int_0^(pi//2)cosx\ dx

Evaluate the following integrals as limit of sum: int_a^b e^x dx

Evaluate the following integrals as limit of sum: int_0^3(x+4)dx

Evaluate the following integrals as limit of sum: int_0^2(x+4)dx

Evaluate the following integrals as limit of sum: int_0^2e^x dx

Evaluate the following integrals as limit of sum: int_2^3x^2dx

Evaluate the following integrals as limit of sum: int_1^4(x^2-x)dx

Evaluate the following integrals as limit of sum: int_1^3(2x+3)dx

Evaluate the following integrals as limit of sum: int_1^3(3x-2)dx

Evaluate the following integrals as limit of sum: int_1^2(x^2-1)dx