Home
Class 12
MATHS
Let f(x)=lim(nto oo) 1/n((x+1/n)^(2)+(x+...

Let `f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2))`
Then the minimum value of `f(x)` is

A

`1//4`

B

`1//6`

C

`1//9`

D

`1//12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) \) defined as \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \left( \left( x + \frac{1}{n} \right)^2 + \left( x + \frac{2}{n} \right)^2 + \ldots + \left( x + \frac{n-1}{n} \right)^2 \right), \] we will follow these steps: ### Step 1: Rewrite the expression We can rewrite the sum inside the limit: \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left( x + \frac{k}{n} \right)^2. \] ### Step 2: Expand the square Expanding the square gives: \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left( x^2 + 2x \frac{k}{n} + \left( \frac{k}{n} \right)^2 \right). \] ### Step 3: Separate the terms We can separate the sum: \[ f(x) = \lim_{n \to \infty} \left( \frac{1}{n} \sum_{k=1}^{n} x^2 + \frac{2x}{n} \sum_{k=1}^{n} \frac{k}{n} + \frac{1}{n} \sum_{k=1}^{n} \left( \frac{k}{n} \right)^2 \right). \] ### Step 4: Calculate each term 1. The first term: \[ \frac{1}{n} \sum_{k=1}^{n} x^2 = x^2. \] 2. The second term: \[ \frac{2x}{n} \sum_{k=1}^{n} \frac{k}{n} = \frac{2x}{n^2} \cdot \frac{n(n+1)}{2} \to x \quad \text{as } n \to \infty. \] 3. The third term: \[ \frac{1}{n} \sum_{k=1}^{n} \left( \frac{k}{n} \right)^2 = \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \to \frac{1}{3} \quad \text{as } n \to \infty. \] ### Step 5: Combine the results Putting all these together: \[ f(x) = x^2 + x + \frac{1}{3}. \] ### Step 6: Find the minimum value To find the minimum value of \( f(x) = x^2 + x + \frac{1}{3} \), we can complete the square: \[ f(x) = \left( x + \frac{1}{2} \right)^2 - \frac{1}{4} + \frac{1}{3} = \left( x + \frac{1}{2} \right)^2 + \frac{1}{12}. \] The minimum value occurs when \( \left( x + \frac{1}{2} \right)^2 = 0 \), which gives \( x = -\frac{1}{2} \). Thus, the minimum value of \( f(x) \) is: \[ f\left(-\frac{1}{2}\right) = 0 + \frac{1}{12} = \frac{1}{12}. \] ### Final Answer: The minimum value of \( f(x) \) is \( \frac{1}{12} \). ---

To find the minimum value of the function \( f(x) \) defined as \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \left( \left( x + \frac{1}{n} \right)^2 + \left( x + \frac{2}{n} \right)^2 + \ldots + \left( x + \frac{n-1}{n} \right)^2 \right), \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=lim_(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which of the following alternative(s) is/ are correct?

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

lim_(nto oo) (2^n+5^n)^(1//n) is equal to