Home
Class 12
MATHS
Let f(x)=lim(nto oo) 1/n((x+1/n)^(2)+(x+...

Let `f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2))`
Then the minimum value of `f(x)` is

A

`1//4`

B

`1//6`

C

`1//9`

D

`1//12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) \) defined as \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \left( \left( x + \frac{1}{n} \right)^2 + \left( x + \frac{2}{n} \right)^2 + \ldots + \left( x + \frac{n-1}{n} \right)^2 \right), \] we will follow these steps: ### Step 1: Rewrite the expression We can rewrite the sum inside the limit: \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left( x + \frac{k}{n} \right)^2. \] ### Step 2: Expand the square Expanding the square gives: \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left( x^2 + 2x \frac{k}{n} + \left( \frac{k}{n} \right)^2 \right). \] ### Step 3: Separate the terms We can separate the sum: \[ f(x) = \lim_{n \to \infty} \left( \frac{1}{n} \sum_{k=1}^{n} x^2 + \frac{2x}{n} \sum_{k=1}^{n} \frac{k}{n} + \frac{1}{n} \sum_{k=1}^{n} \left( \frac{k}{n} \right)^2 \right). \] ### Step 4: Calculate each term 1. The first term: \[ \frac{1}{n} \sum_{k=1}^{n} x^2 = x^2. \] 2. The second term: \[ \frac{2x}{n} \sum_{k=1}^{n} \frac{k}{n} = \frac{2x}{n^2} \cdot \frac{n(n+1)}{2} \to x \quad \text{as } n \to \infty. \] 3. The third term: \[ \frac{1}{n} \sum_{k=1}^{n} \left( \frac{k}{n} \right)^2 = \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \to \frac{1}{3} \quad \text{as } n \to \infty. \] ### Step 5: Combine the results Putting all these together: \[ f(x) = x^2 + x + \frac{1}{3}. \] ### Step 6: Find the minimum value To find the minimum value of \( f(x) = x^2 + x + \frac{1}{3} \), we can complete the square: \[ f(x) = \left( x + \frac{1}{2} \right)^2 - \frac{1}{4} + \frac{1}{3} = \left( x + \frac{1}{2} \right)^2 + \frac{1}{12}. \] The minimum value occurs when \( \left( x + \frac{1}{2} \right)^2 = 0 \), which gives \( x = -\frac{1}{2} \). Thus, the minimum value of \( f(x) \) is: \[ f\left(-\frac{1}{2}\right) = 0 + \frac{1}{12} = \frac{1}{12}. \] ### Final Answer: The minimum value of \( f(x) \) is \( \frac{1}{12} \). ---

To find the minimum value of the function \( f(x) \) defined as \[ f(x) = \lim_{n \to \infty} \frac{1}{n} \left( \left( x + \frac{1}{n} \right)^2 + \left( x + \frac{2}{n} \right)^2 + \ldots + \left( x + \frac{n-1}{n} \right)^2 \right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=lim_(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which of the following alternative(s) is/ are correct?

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Let f(x)=lim(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2))...

    Text Solution

    |

  2. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  3. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  4. The value of lim(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^...

    Text Solution

    |

  5. T h ev a l u eof(lim)(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n...

    Text Solution

    |

  6. int(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha ...

    Text Solution

    |

  7. If f(x) = min({x}, {-x}) x in R, where {x} denotes the fractional par...

    Text Solution

    |

  8. Which of the following is incorrect ?

    Text Solution

    |

  9. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  10. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  11. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  12. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  13. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  14. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  15. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  16. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  17. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  18. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  19. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  20. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |