Home
Class 12
MATHS
Evaluate the following limit: lim(nto ...

Evaluate the following limit:
`lim_(nto oo)(sum_(r=1)^(n) sqrt(r)sum_(r=1)^(h)1/(sqrt(r)))/(sum_(r=1)^(n)r)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{\sum_{r=1}^{n} \sqrt{r} \sum_{r=1}^{n} \frac{1}{\sqrt{r}}}{\sum_{r=1}^{n} r}, \] we will follow these steps: ### Step 1: Rewrite the limit expression We start by rewriting the limit expression for clarity: \[ L = \lim_{n \to \infty} \frac{\left( \sum_{r=1}^{n} \sqrt{r} \right) \left( \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \right)}{\sum_{r=1}^{n} r}. \] ### Step 2: Evaluate the sums Next, we need to evaluate each of the sums as \( n \to \infty \). 1. **Evaluate \( \sum_{r=1}^{n} \sqrt{r} \)**: The sum \( \sum_{r=1}^{n} \sqrt{r} \) can be approximated by the integral: \[ \sum_{r=1}^{n} \sqrt{r} \sim \int_{1}^{n} \sqrt{x} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_{1}^{n} = \frac{2}{3} (n^{3/2} - 1) \sim \frac{2}{3} n^{3/2}. \] 2. **Evaluate \( \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \)**: The sum \( \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \) can also be approximated by the integral: \[ \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \sim \int_{1}^{n} \frac{1}{\sqrt{x}} \, dx = \left[ 2\sqrt{x} \right]_{1}^{n} = 2(\sqrt{n} - 1) \sim 2\sqrt{n}. \] 3. **Evaluate \( \sum_{r=1}^{n} r \)**: The sum \( \sum_{r=1}^{n} r \) is given by: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \sim \frac{n^2}{2}. \] ### Step 3: Substitute the evaluated sums into the limit Now we substitute the approximations back into the limit: \[ L = \lim_{n \to \infty} \frac{\left( \frac{2}{3} n^{3/2} \right) \left( 2\sqrt{n} \right)}{\frac{n^2}{2}}. \] ### Step 4: Simplify the expression Simplifying the expression gives: \[ L = \lim_{n \to \infty} \frac{\frac{4}{3} n^{3/2} \cdot \sqrt{n}}{\frac{n^2}{2}} = \lim_{n \to \infty} \frac{\frac{4}{3} n^{2}}{\frac{n^2}{2}} = \lim_{n \to \infty} \frac{4}{3} \cdot 2 = \frac{8}{3}. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{\frac{8}{3}}. \]

To evaluate the limit \[ \lim_{n \to \infty} \frac{\sum_{r=1}^{n} \sqrt{r} \sum_{r=1}^{n} \frac{1}{\sqrt{r}}}{\sum_{r=1}^{n} r}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Find the sum sum_(r=1)^n r/(r+1)!

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  2. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  3. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  4. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  5. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  6. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  7. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  8. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  9. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  10. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  11. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  12. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  13. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  14. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  15. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  16. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  17. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  18. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |

  19. If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...

    Text Solution

    |

  20. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |