Home
Class 12
MATHS
Evaluate the following limit: lim(nto ...

Evaluate the following limit:
`lim_(nto oo)(sum_(r=1)^(n) sqrt(r)sum_(r=1)^(h)1/(sqrt(r)))/(sum_(r=1)^(n)r)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{\sum_{r=1}^{n} \sqrt{r} \sum_{r=1}^{n} \frac{1}{\sqrt{r}}}{\sum_{r=1}^{n} r}, \] we will follow these steps: ### Step 1: Rewrite the limit expression We start by rewriting the limit expression for clarity: \[ L = \lim_{n \to \infty} \frac{\left( \sum_{r=1}^{n} \sqrt{r} \right) \left( \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \right)}{\sum_{r=1}^{n} r}. \] ### Step 2: Evaluate the sums Next, we need to evaluate each of the sums as \( n \to \infty \). 1. **Evaluate \( \sum_{r=1}^{n} \sqrt{r} \)**: The sum \( \sum_{r=1}^{n} \sqrt{r} \) can be approximated by the integral: \[ \sum_{r=1}^{n} \sqrt{r} \sim \int_{1}^{n} \sqrt{x} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_{1}^{n} = \frac{2}{3} (n^{3/2} - 1) \sim \frac{2}{3} n^{3/2}. \] 2. **Evaluate \( \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \)**: The sum \( \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \) can also be approximated by the integral: \[ \sum_{r=1}^{n} \frac{1}{\sqrt{r}} \sim \int_{1}^{n} \frac{1}{\sqrt{x}} \, dx = \left[ 2\sqrt{x} \right]_{1}^{n} = 2(\sqrt{n} - 1) \sim 2\sqrt{n}. \] 3. **Evaluate \( \sum_{r=1}^{n} r \)**: The sum \( \sum_{r=1}^{n} r \) is given by: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \sim \frac{n^2}{2}. \] ### Step 3: Substitute the evaluated sums into the limit Now we substitute the approximations back into the limit: \[ L = \lim_{n \to \infty} \frac{\left( \frac{2}{3} n^{3/2} \right) \left( 2\sqrt{n} \right)}{\frac{n^2}{2}}. \] ### Step 4: Simplify the expression Simplifying the expression gives: \[ L = \lim_{n \to \infty} \frac{\frac{4}{3} n^{3/2} \cdot \sqrt{n}}{\frac{n^2}{2}} = \lim_{n \to \infty} \frac{\frac{4}{3} n^{2}}{\frac{n^2}{2}} = \lim_{n \to \infty} \frac{4}{3} \cdot 2 = \frac{8}{3}. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{\frac{8}{3}}. \]

To evaluate the limit \[ \lim_{n \to \infty} \frac{\sum_{r=1}^{n} \sqrt{r} \sum_{r=1}^{n} \frac{1}{\sqrt{r}}}{\sum_{r=1}^{n} r}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Find the sum sum_(r=1)^n r/(r+1)!

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to