Home
Class 12
MATHS
int(0)^(pi)[cotx]dx, where [.] denotes t...

`int_(0)^(pi)[cotx]dx,` where [.] denotes the greatest integer function, is equal to

A

`(pi)/2`

B

`1`

C

`-1`

D

`-(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} [\cot x] \, dx \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\pi} [\cot x] \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] In our case, we have: \[ I = \int_{0}^{\pi} [\cot(\pi - x)] \, dx \] ### Step 3: Simplify \(\cot(\pi - x)\) Using the identity \(\cot(\pi - x) = -\cot x\), we rewrite the integral: \[ I = \int_{0}^{\pi} [ -\cot x ] \, dx \] ### Step 4: Combine the Integrals Now we can add the two expressions for \(I\): \[ 2I = \int_{0}^{\pi} [\cot x] \, dx + \int_{0}^{\pi} [-\cot x] \, dx \] This simplifies to: \[ 2I = \int_{0}^{\pi} \left( [\cot x] + [-\cot x] \right) \, dx \] ### Step 5: Apply the Property of the Greatest Integer Function From the property of the greatest integer function, we know: \[ [\cot x] + [-\cot x] = -1 \quad \text{(for } \cot x \text{ not an integer)} \] Thus, we have: \[ 2I = \int_{0}^{\pi} -1 \, dx \] ### Step 6: Evaluate the Integral Now we can evaluate the integral: \[ 2I = -\int_{0}^{\pi} 1 \, dx = -[x]_{0}^{\pi} = -(\pi - 0) = -\pi \] ### Step 7: Solve for \(I\) Now, we can solve for \(I\): \[ I = \frac{-\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ I = -\frac{\pi}{2} \]

To solve the integral \( I = \int_{0}^{\pi} [\cot x] \, dx \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\pi} [\cot x] \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

Knowledge Check

  • Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

    A
    A. 2
    B
    B. 1
    C
    C. 0
    D
    D. does not exist
  • Similar Questions

    Explore conceptually related problems

    int_0^oo[3/(x^2+1)]dx, where [.] denotes the greatest integer function, is equal to (A) sqrt2 (B) sqrt2+1 (C) 3/sqrt2 (D) infinite

    The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

    int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to:

    int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

    The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

    The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

    The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to