Home
Class 12
MATHS
The locus of the orthocentre of the tria...

The locus of the orthocentre of the triangle formed by the lines `(1+p) x-py + p(1 + p) = 0, (1 + q)x-qy + q(1 +q) = 0` and y = 0, where `p!=*q`, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line

A

a hyperbola

B

a parabola

C

an ellipse

D

a straight line

Text Solution

Verified by Experts

The correct Answer is:
D

The intersection point y=0 with the first line si B(-p, 0).
The intersection point of y=0 with the second line is A(-q, 0).
The intersection point of the two line is
C(pq, (p+1)(q+1)
The altitude from C to AB is x = pq.
The altitude from B to AC is
`y = -(q)/(1+q)(x+p)` Solving these two, we get x=pq and y=-pq.
Therefore, the locus of the orthocenter is x+y=0.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (JEE MAIN)|9 Videos
  • STRAIGHT LINE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos

Similar Questions

Explore conceptually related problems

The curve represented by the equation sqrt(p x)+sqrt(q y)=1 where p ,q in R ,p ,q >0, is (a) a circle (b) a parabola (c) an ellipse (d) a hyperbola

Show that the reflection of the line px+qy+r=0 in the line x+y+1 =0 is the line qx+py+(p+q-r)=0, where p!= -q .

The point of injtersection of the line x/p+y/q=1 and x/q+y/p=1 lies on the line

The equations of the tangents drawn from the origin to the circle x^2 + y^2 - 2px - 2qy + q^2 = 0 are perpendicular if (A) p^2 = q^2 (B) p^2 = q^2 =1 (C) p = q/2 (D) q= p/2

The value of 1.999 ….. In the form of p/q , where p and q are integers and q ne 0 , is

Statement-l: If the diagonals of the quadrilateral formed by the lines px+ gy+ r= 0, p'x +gy +r'= 0, p'x +q'y +r'= 0 , are at right angles, then p^2 +q^2= p^2+q^2 . Statement-2: Diagonals of a rhombus are bisected and perpendicular to each other.

If p != 0, q != 0 and the roots of x^(2) + px +q = 0 are p and q, then (p, q) =

Solve for x and y, px + qy = 1 and qx + py = ((p + q)^(2))/(p^2 + q^2)-1 .

The lines px +qy+r=0, qx + ry + p =0,rx + py+q=0, are concurrant then

The lines px +qy+r=0, qx + ry + p =0,rx + py+q=0, are concurrant then