Home
Class 12
MATHS
int(3x^(13)+2x^(11))/((2x^4+3x^2+1)^4)dx...

`int(3x^(13)+2x^(11))/((2x^4+3x^2+1)^4)dx`

A

`x^4/((2x^4+3x^2+1)^3)+C`

B

`x^12/(6(2x^4+3x^2+1)^3)+C`

C

`x^4/(6(2x^4+3x^2+1)^3)+C`

D

`x^12/((2x^4+3x^2+1)^3)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{3x^{13} + 2x^{11}}{(2x^4 + 3x^2 + 1)^4} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integrand First, we can simplify the integrand by factoring out \(x^{16}\) from the numerator: \[ I = \int \frac{3x^{13} + 2x^{11}}{(2x^4 + 3x^2 + 1)^4} \, dx = \int \frac{x^{11}(3x^2 + 2)}{(2x^4 + 3x^2 + 1)^4} \, dx. \] ### Step 2: Make a Substitution Now, let's make a substitution. Let \[ t = 2 + \frac{3}{x^2} + \frac{1}{x^4}. \] Next, we need to find \(dt\): \[ \frac{dt}{dx} = -\frac{6}{x^3} - \frac{4}{x^5} = -\frac{6x^2 + 4}{x^5}. \] Thus, \[ dt = -\frac{(6x^2 + 4)}{x^5} \, dx \quad \Rightarrow \quad dx = -\frac{x^5}{6x^2 + 4} \, dt. \] ### Step 3: Substitute in the Integral Now we substitute \(t\) and \(dx\) into the integral: \[ I = \int \frac{3x^{13} + 2x^{11}}{t^4} \left(-\frac{x^5}{6x^2 + 4}\right) dt. \] ### Step 4: Simplify the Integral Now we can express \(3x^{13} + 2x^{11}\) in terms of \(t\): \[ 3x^{13} + 2x^{11} = x^{11}(3x^2 + 2). \] Thus, the integral becomes: \[ I = -\int \frac{x^{11}(3x^2 + 2)}{t^4(6x^2 + 4)} \, dt. \] ### Step 5: Solve the Integral Now we can integrate: \[ I = -\frac{1}{6} \int \frac{dt}{t^4}. \] The integral of \(t^{-4}\) is: \[ \int t^{-4} \, dt = -\frac{1}{3} t^{-3} + C. \] Thus, \[ I = -\frac{1}{6} \left(-\frac{1}{3} t^{-3}\right) + C = \frac{1}{18} t^{-3} + C. \] ### Step 6: Substitute Back for \(t\) Substituting back for \(t\): \[ I = \frac{1}{18} \left(2 + \frac{3}{x^2} + \frac{1}{x^4}\right)^{-3} + C. \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{18} \left(2 + \frac{3}{x^2} + \frac{1}{x^4}\right)^{-3} + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 8|11 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

\int (3x^(2)+4x^(3)) dx

int1/(3x^2+13x-10)dx

int1/(3x^2+13x-10)dx

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

Evaluate: int((x^2+1)(x^2+2))/((x^2+3)(x^2+4))\ dx

Evaluate: int((x^2+1)(x^2+4))/((x^2+3)(x^2-5))\ dx

Evaluate: int((x^2+1)(x^2+4))/((x^2+3)(x^2-5))\ dx

int1/(x^4+3x^2+9)dx