Home
Class 12
MATHS
The value of int(0)^(pi)abscosx^3dx is...

The value of `int_(0)^(pi)abscosx^3dx` is

A

`2//3`

B

0

C

`-4//3`

D

`4//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} |\cos x|^3 \, dx \), we can follow these steps: ### Step 1: Analyze the function The function \( |\cos x| \) is non-negative and periodic. Over the interval \( [0, \pi] \), \( \cos x \) is non-negative from \( 0 \) to \( \frac{\pi}{2} \) and non-positive from \( \frac{\pi}{2} \) to \( \pi \). Therefore, we can split the integral at \( \frac{\pi}{2} \). ### Step 2: Split the integral We can express the integral as: \[ \int_{0}^{\pi} |\cos x|^3 \, dx = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx + \int_{\frac{\pi}{2}}^{\pi} |\cos x|^3 \, dx \] Since \( \cos x \) is non-negative in the first interval and non-positive in the second, we have: \[ \int_{\frac{\pi}{2}}^{\pi} |\cos x|^3 \, dx = \int_{\frac{\pi}{2}}^{\pi} (-\cos x)^3 \, dx = -\int_{\frac{\pi}{2}}^{\pi} \cos^3 x \, dx \] ### Step 3: Combine the integrals Thus, we can write: \[ \int_{0}^{\pi} |\cos x|^3 \, dx = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx - \int_{\frac{\pi}{2}}^{\pi} \cos^3 x \, dx \] This simplifies to: \[ \int_{0}^{\pi} |\cos x|^3 \, dx = 2 \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \] ### Step 4: Use the reduction formula To evaluate \( \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \), we can use the reduction formula: \[ \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, dx \] For \( n = 3 \): \[ \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] And we know: \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1 \] Thus: \[ \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx = \frac{2}{3} \cdot 1 = \frac{2}{3} \] ### Step 5: Final calculation Now substituting back: \[ \int_{0}^{\pi} |\cos x|^3 \, dx = 2 \cdot \frac{2}{3} = \frac{4}{3} \] ### Final Answer The value of \( \int_{0}^{\pi} |\cos x|^3 \, dx \) is \( \frac{4}{3} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(2pi) cos^(99)x dx , is

int_(0)^(pi)|cosx|dx=?

The value of int_(0)^(16pi//3) |sinx|dx is

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

Evaluate : int_(0)^(pi) |cos x| dx

Value of int_(0)^(pi//2) cos 3t is

The value of int_(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is