• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
Class 12
MATHS
Express sin^(-1).(sqrtx)/(sqrt(x + a)) a...

Express `sin^(-1).(sqrtx)/(sqrt(x + a))` as a function of `tan^(-1)`

To view this video, please enable JavaScript and consider upgrading to a web browser thatsupports HTML5 video

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) \) as a function of \( \tan^{-1} \), we can follow these steps: ### Step 1: Substitute \( x \) Let \( x = a \tan^2 \theta \). This substitution will help us simplify the expression. ### Step 2: Rewrite the expression Now, substitute \( x \) in the original expression: \[ \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) = \sin^{-1}\left(\frac{\sqrt{a \tan^2 \theta}}{\sqrt{a \tan^2 \theta + a}}\right) \] ### Step 3: Simplify the numerator and denominator The expression simplifies to: \[ \sin^{-1}\left(\frac{\sqrt{a} \tan \theta}{\sqrt{a(\tan^2 \theta + 1)}}\right) \] Since \( \tan^2 \theta + 1 = \sec^2 \theta \), we can rewrite the denominator: \[ \sin^{-1}\left(\frac{\sqrt{a} \tan \theta}{\sqrt{a} \sec \theta}\right) \] ### Step 4: Cancel out \( \sqrt{a} \) This simplifies to: \[ \sin^{-1}\left(\frac{\tan \theta}{\sec \theta}\right) = \sin^{-1}(\sin \theta) \] ### Step 5: Simplify further Since \( \sin^{-1}(\sin \theta) = \theta \), we have: \[ \theta = \tan^{-1}(\tan \theta) \] ### Step 6: Relate \( \theta \) back to \( x \) From our substitution \( x = a \tan^2 \theta \), we can express \( \tan \theta \) as: \[ \tan \theta = \sqrt{\frac{x}{a}} \] Thus, \[ \theta = \tan^{-1}\left(\frac{\sqrt{x}}{\sqrt{a}}\right) \] ### Final Result So, we can express \( \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) \) as: \[ \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) = \tan^{-1}\left(\frac{\sqrt{x}}{\sqrt{a}}\right) \] ---

To express \( \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) \) as a function of \( \tan^{-1} \), we can follow these steps: ### Step 1: Substitute \( x \) Let \( x = a \tan^2 \theta \). This substitution will help us simplify the expression. ### Step 2: Rewrite the expression Now, substitute \( x \) in the original expression: \[ ...
Doubtnut Promotions Banner Desktop LightDoubtnut Promotions Banner Desktop DarkDoubtnut Promotions Banner Mobile LightDoubtnut Promotions Banner Mobile Dark

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x->1)sqrt(x+8)/sqrtx

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

Evaluate : int(1)/(sqrtx+sqrt(x-1))dx .

Differentiate the following function with respect to x : sin^(-1){(x+sqrt(1-x^2))/(sqrt(2))} , -1 lt x lt1

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)

The complete solution set of the equation sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2)) is :

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Let I =int _(0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int _(0)^(1 ) sqrt((1-sqrtx)/(1+sqrtx))dx then correct statement (s) is/are:

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Concept application exercise 7.3
  1. Express sin^(-1).(sqrtx)/(sqrt(x + a)) as a function of tan^(-1)

    02:53

    |

  2. If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)), then find the value of x

    04:05

    |

  3. Prove that: cos e c(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(...

    06:27

    |

  4. Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x...

    03:28

    |

  5. tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

    02:03

    |

  6. Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

    02:28

    |

  7. Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt...

    01:58

    |

  8. Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/...

    03:56

    |

  9. If x lt 0, the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (p...

    04:19

    |

  10. Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8...

    04:04

    |

  11. The value of tan{(cos^(- 1)(-2/7)-pi/2)] is

    03:17

    |

  12. If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2-3x+2, then find the value of ...

    03:02

    |

Home
Profile
|