Home
Class 12
MATHS
Express sin^(-1).(sqrtx)/(sqrt(x + a)) a...

Express `sin^(-1).(sqrtx)/(sqrt(x + a))` as a function of `tan^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) \) as a function of \( \tan^{-1} \), we can follow these steps: ### Step 1: Substitute \( x \) Let \( x = a \tan^2 \theta \). This substitution will help us simplify the expression. ### Step 2: Rewrite the expression Now, substitute \( x \) in the original expression: \[ \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) = \sin^{-1}\left(\frac{\sqrt{a \tan^2 \theta}}{\sqrt{a \tan^2 \theta + a}}\right) \] ### Step 3: Simplify the numerator and denominator The expression simplifies to: \[ \sin^{-1}\left(\frac{\sqrt{a} \tan \theta}{\sqrt{a(\tan^2 \theta + 1)}}\right) \] Since \( \tan^2 \theta + 1 = \sec^2 \theta \), we can rewrite the denominator: \[ \sin^{-1}\left(\frac{\sqrt{a} \tan \theta}{\sqrt{a} \sec \theta}\right) \] ### Step 4: Cancel out \( \sqrt{a} \) This simplifies to: \[ \sin^{-1}\left(\frac{\tan \theta}{\sec \theta}\right) = \sin^{-1}(\sin \theta) \] ### Step 5: Simplify further Since \( \sin^{-1}(\sin \theta) = \theta \), we have: \[ \theta = \tan^{-1}(\tan \theta) \] ### Step 6: Relate \( \theta \) back to \( x \) From our substitution \( x = a \tan^2 \theta \), we can express \( \tan \theta \) as: \[ \tan \theta = \sqrt{\frac{x}{a}} \] Thus, \[ \theta = \tan^{-1}\left(\frac{\sqrt{x}}{\sqrt{a}}\right) \] ### Final Result So, we can express \( \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) \) as: \[ \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) = \tan^{-1}\left(\frac{\sqrt{x}}{\sqrt{a}}\right) \] ---

To express \( \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x + a}}\right) \) as a function of \( \tan^{-1} \), we can follow these steps: ### Step 1: Substitute \( x \) Let \( x = a \tan^2 \theta \). This substitution will help us simplify the expression. ### Step 2: Rewrite the expression Now, substitute \( x \) in the original expression: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x->1)sqrt(x+8)/sqrtx

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

Evaluate : int(1)/(sqrtx+sqrt(x-1))dx .

Differentiate the following function with respect to x : sin^(-1){(x+sqrt(1-x^2))/(sqrt(2))} , -1 lt x lt1

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)

The complete solution set of the equation sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2)) is :

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Let I =int _(0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int _(0)^(1 ) sqrt((1-sqrtx)/(1+sqrtx))dx then correct statement (s) is/are: