Home
Class 12
MATHS
Find the value of sin^(-1) ((3)/(5)) + t...

Find the value of `sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) \), we can follow these steps: ### Step 1: Identify the angle for \( \sin^{-1} \left( \frac{3}{5} \right) \) Let \( \theta = \sin^{-1} \left( \frac{3}{5} \right) \). By definition of the inverse sine function, we have: \[ \sin \theta = \frac{3}{5} \] This means that in a right triangle where the opposite side is 3 and the hypotenuse is 5, we can find the adjacent side using the Pythagorean theorem. ### Step 2: Calculate the adjacent side Using the Pythagorean theorem: \[ \text{adjacent}^2 + 3^2 = 5^2 \] \[ \text{adjacent}^2 + 9 = 25 \] \[ \text{adjacent}^2 = 16 \quad \Rightarrow \quad \text{adjacent} = 4 \] ### Step 3: Find \( \tan \theta \) Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{3}{4} \] ### Step 4: Rewrite the expression Now we can rewrite the original expression: \[ \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) = \tan^{-1} \left( \frac{3}{4} \right) + \tan^{-1} \left( \frac{1}{7} \right) \] ### Step 5: Use the formula for \( \tan^{-1} a + \tan^{-1} b \) We can use the formula: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] where \( a = \frac{3}{4} \) and \( b = \frac{1}{7} \). ### Step 6: Substitute values into the formula Substituting \( a \) and \( b \): \[ \tan^{-1} \left( \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}} \right) \] ### Step 7: Calculate the numerator Calculating the numerator: \[ \frac{3}{4} + \frac{1}{7} = \frac{21 + 4}{28} = \frac{25}{28} \] ### Step 8: Calculate the denominator Calculating the denominator: \[ 1 - \frac{3}{4} \cdot \frac{1}{7} = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] ### Step 9: Combine the results Now substituting back into the formula: \[ \tan^{-1} \left( \frac{\frac{25}{28}}{\frac{25}{28}} \right) = \tan^{-1}(1) \] ### Step 10: Final result Since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) = \frac{\pi}{4} \]

To find the value of \( \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) \), we can follow these steps: ### Step 1: Identify the angle for \( \sin^{-1} \left( \frac{3}{5} \right) \) Let \( \theta = \sin^{-1} \left( \frac{3}{5} \right) \). By definition of the inverse sine function, we have: \[ \sin \theta = \frac{3}{5} \] This means that in a right triangle where the opposite side is 3 and the hypotenuse is 5, we can find the adjacent side using the Pythagorean theorem. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(sin(3pi)/5) .

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Find the value of sin^(-1)(sin.(5pi)/3) .

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

Find the values of sin (cos−1 3/5)

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Find the value of sin^(-1)(sin7) and sin^(-1)(sin(-5))

Find the value of tan(sin^(-1)3/5+cot^(-1)3/2)

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))] .