Home
Class 12
MATHS
If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 ...

If `sin^-1 x+sin^-1=(2pi)/3,` then `cos^-1 x cos^-1 y` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) and find the value of \( \cos^{-1} x + \cos^{-1} y \), we can follow these steps: ### Step 1: Write the given equation We start with the equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \] ### Step 2: Convert \( \sin^{-1} \) to \( \cos^{-1} \) Using the identity \( \sin^{-1} z = \frac{\pi}{2} - \cos^{-1} z \), we can rewrite the equation: \[ \left(\frac{\pi}{2} - \cos^{-1} x\right) + \left(\frac{\pi}{2} - \cos^{-1} y\right) = \frac{2\pi}{3} \] ### Step 3: Simplify the equation Now, simplify the left-hand side: \[ \frac{\pi}{2} + \frac{\pi}{2} - \cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} \] This simplifies to: \[ \pi - \cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} \] ### Step 4: Rearrange the equation Now, we can rearrange the equation to isolate \( \cos^{-1} x + \cos^{-1} y \): \[ -\cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} - \pi \] This simplifies to: \[ -\cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} - \frac{3\pi}{3} \] \[ -\cos^{-1} x - \cos^{-1} y = -\frac{\pi}{3} \] ### Step 5: Multiply by -1 Multiplying both sides by -1 gives: \[ \cos^{-1} x + \cos^{-1} y = \frac{\pi}{3} \] ### Final Result Thus, the value of \( \cos^{-1} x + \cos^{-1} y \) is: \[ \cos^{-1} x + \cos^{-1} y = \frac{\pi}{3} \] ---

To solve the equation \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) and find the value of \( \cos^{-1} x + \cos^{-1} y \), we can follow these steps: ### Step 1: Write the given equation We start with the equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1)x+2cos^(-1)x=(2pi)/3 , then find x.

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to: