Home
Class 12
MATHS
If cos^(-1).(x)/(2) + cos^(-1).(y)/(3) =...

If `cos^(-1).(x)/(2) + cos^(-1).(y)/(3) = (pi)/(6)`, then prove that `(x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)`

Text Solution

AI Generated Solution

To solve the equation \( \cos^{-1}\left(\frac{x}{2}\right) + \cos^{-1}\left(\frac{y}{3}\right) = \frac{\pi}{6} \) and prove that \[ \frac{x^2}{4} - \frac{xy}{2\sqrt{3}} + \frac{y^2}{9} = \frac{1}{4}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If cos ^(-1) .(x)/(a)+ cos ^(-1). (y)/(b) = theta then prove that (x^(2))/(a^(2)) -(2xy)/(ab) . cos theta+ (y^(2))/(b^(2)) = sin ^(2) theta .

If cos ^(-1) ""(x)/(2) + cos ^(-1) "" (y)/(3) = theta, then prove that 9x ^(2) - 12 xy cos theta + 4y ^(2) = 36 sin ^(2) theta

If cos^(-1) (x/2) + cos^(-1) (y/3) =alpha then prove that 9x^2-12xycosalpha+4y^2=36sin^2alpha .

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then prove that (1-x^2)y_2-xy_(1)-4=0.

(i) If sin ^(-) x + sin ^(-1) y = pi//2 , then prove that : cos^(-1) x = sin^(-1) y (ii) Prove that : sin ((1)/(2) cos^(-1).(4)/(5))= (1)/sqrt(10) (iii) Prove that : tan ((1)/(2) cos^(-1).(sqrt(5))/(3)) = (3-sqrt(5))/(2)

If cos^(-1)((x)/(3))+cos^(-1)((y)/(2))=(theta)/(2) , then the value of 4x^(2)-12xy cos((theta)/(2))+9y^(2) is equal to :