Home
Class 12
MATHS
cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) i...

`cos^(-1) (cos (2 cot^(-1) (sqrt2 -1)))` is equal to

A

`sqrt2 -1`

B

`(pi)/(4)`

C

`(3pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - 1))) \), we will follow these steps: ### Step 1: Simplify \( \cot^{-1}(\sqrt{2} - 1) \) We start by evaluating \( \cot^{-1}(\sqrt{2} - 1) \). We know that \( \cot^{-1}(x) \) gives us an angle whose cotangent is \( x \). Let \( \theta = \cot^{-1}(\sqrt{2} - 1) \). This means: \[ \cot(\theta) = \sqrt{2} - 1 \] ### Step 2: Find \( \tan(\theta) \) Using the identity \( \tan(\theta) = \frac{1}{\cot(\theta)} \): \[ \tan(\theta) = \frac{1}{\sqrt{2} - 1} \] To simplify this, we can rationalize the denominator: \[ \tan(\theta) = \frac{1(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1 \] ### Step 3: Find \( 2 \cot^{-1}(\sqrt{2} - 1) \) Now we need to find \( 2\theta \): \[ 2\theta = 2 \cot^{-1}(\sqrt{2} - 1) \] Using the double angle formula for cotangent: \[ \cot(2\theta) = \frac{\cot^2(\theta) - 1}{2\cot(\theta)} \] Substituting \( \cot(\theta) = \sqrt{2} - 1 \): \[ \cot(2\theta) = \frac{(\sqrt{2} - 1)^2 - 1}{2(\sqrt{2} - 1)} \] Calculating \( (\sqrt{2} - 1)^2 \): \[ (\sqrt{2} - 1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] Thus, \[ \cot(2\theta) = \frac{(3 - 2\sqrt{2}) - 1}{2(\sqrt{2} - 1)} = \frac{2 - 2\sqrt{2}}{2(\sqrt{2} - 1)} = \frac{1 - \sqrt{2}}{\sqrt{2} - 1} = -1 \] ### Step 4: Find \( 2\theta \) Since \( \cot(2\theta) = -1 \), we know: \[ 2\theta = \frac{3\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 5: Find \( \cos^{-1}(\cos(2\theta)) \) Now we substitute back into our original expression: \[ \cos^{-1}(\cos(2\theta)) = \cos^{-1}(\cos(\frac{3\pi}{4})) \] Since \( \cos^{-1}(\cos(x)) = x \) if \( x \) is in the range \( [0, \pi] \), we have: \[ \cos^{-1}(\cos(\frac{3\pi}{4})) = \frac{3\pi}{4} \] ### Final Answer Thus, the final answer is: \[ \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - 1))) = \frac{3\pi}{4} \]

To solve the expression \( \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - 1))) \), we will follow these steps: ### Step 1: Simplify \( \cot^{-1}(\sqrt{2} - 1) \) We start by evaluating \( \cot^{-1}(\sqrt{2} - 1) \). We know that \( \cot^{-1}(x) \) gives us an angle whose cotangent is \( x \). Let \( \theta = \cot^{-1}(\sqrt{2} - 1) \). This means: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1 (b) pi/4 (c) (3pi)/4 (d) non eoft h e s e

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

The value of sin\ (1/2cot^(-1)(-3/4))+cos(1/2cot^(-1)(-3/4)) is/are equal to-

If tan(cos^(-1)x)="sin"(cot^(-1)(1/2)) then x is equal to- a. 1/sqrt(5) b. 2/sqrt(5) c. 3/sqrt(5) d. sqrt(5)/3

The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The slope of the tangent of the curve y=int_(x)^(x^(2))(cos^(-1)t^(2))dt at x=(1)/(sqrt2) is equal to

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

The value of cos (1/2 cos^(-1) . 1/8) is equal to