Home
Class 12
MATHS
Find the value of x which satisfy equati...

Find the value of x which satisfy equation `2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1}(2x) = \sin^{-1}\left(\frac{4x}{1 + 4x^2}\right) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \tan^{-1}(2x) = \sin^{-1}\left(\frac{4x}{1 + 4x^2}\right) \] ### Step 2: Use the double angle identity for sine Recall the double angle identity for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] We can express the right-hand side using the identity: \[ \sin(2\theta) = \frac{4x}{1 + 4x^2} \] where \( \theta = \tan^{-1}(2x) \). ### Step 3: Set \( 2x = \tan(\theta) \) Let \( 2x = \tan(\theta) \). Then, we can express \( x \) as: \[ x = \frac{1}{2} \tan(\theta) \] ### Step 4: Substitute into the equation Substituting \( x \) back into the equation gives: \[ 2 \tan^{-1}(2x) = 2\theta \] Thus, we have: \[ 2\theta = \sin^{-1}\left(\frac{4 \cdot \frac{1}{2} \tan(\theta)}{1 + 4\left(\frac{1}{2} \tan(\theta)\right)^2}\right) \] This simplifies to: \[ 2\theta = \sin^{-1}\left(\frac{2 \tan(\theta)}{1 + \tan^2(\theta)}\right) \] ### Step 5: Simplify the right-hand side Using the identity \( \frac{\tan(\theta)}{1 + \tan^2(\theta)} = \sin(\theta) \): \[ \sin^{-1}(\sin(2\theta)) = 2\theta \] This holds true under the condition that \( 2\theta \) lies within the principal range of the sine function, which is \( -\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2} \). ### Step 6: Determine the range for \( \theta \) From the condition \( -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \), we can find the corresponding range for \( x \): \[ -\frac{\pi}{4} \leq \tan^{-1}(2x) \leq \frac{\pi}{4} \] ### Step 7: Convert back to \( x \) Taking the tangent of all parts: \[ \tan\left(-\frac{\pi}{4}\right) \leq 2x \leq \tan\left(\frac{\pi}{4}\right) \] This gives: \[ -1 \leq 2x \leq 1 \] Dividing by 2: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \] ### Final Answer Thus, the solution for \( x \) is: \[ x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \]

To solve the equation \( 2 \tan^{-1}(2x) = \sin^{-1}\left(\frac{4x}{1 + 4x^2}\right) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \tan^{-1}(2x) = \sin^{-1}\left(\frac{4x}{1 + 4x^2}\right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The set of value of x, satisfying the equation tan^(2)(sin^(-1)x) gt 1 is :

The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is -

The value of x that satisfies tan^(-1)(tan -3)=tan^(2)x is

Find all number of pairs x,y that satisfy the equation tan^(4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

Find the value of a which satisfies the equation ax ^2 +4x+1=0 for some real value of x.

The value of x, AA x in R which satisfy the equation (x-1)|x^(2)-4x+3|+2x^(2)+3x-5=0 is