Home
Class 11
MATHS
If veca and vecb are any two unit vector...

If `veca and vecb` are any two unit vectors, then find the greatest postive integer in the range of `(3|veca + vecb|)/2+2|veca-vecb|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the greatest positive integer in the range of the expression \(\frac{3|\vec{a} + \vec{b}|}{2} + 2|\vec{a} - \vec{b}|\) given that \(\vec{a}\) and \(\vec{b}\) are unit vectors. ### Step-by-step Solution: 1. **Understanding Unit Vectors**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] 2. **Finding \(|\vec{a} + \vec{b}|\)**: We can use the formula for the magnitude of the sum of two vectors: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) \] Substituting the values: \[ |\vec{a} + \vec{b}|^2 = 1^2 + 1^2 + 2(\vec{a} \cdot \vec{b}) = 2 + 2(\vec{a} \cdot \vec{b}) = 2 + 2\cos\theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Taking the square root: \[ |\vec{a} + \vec{b}| = \sqrt{2 + 2\cos\theta} = \sqrt{2(1 + \cos\theta)} = \sqrt{4\cos^2\left(\frac{\theta}{2}\right)} = 2\cos\left(\frac{\theta}{2}\right) \] 3. **Finding \(|\vec{a} - \vec{b}|\)**: Similarly, for the difference: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b}) = 2 - 2\cos\theta = 2(1 - \cos\theta) \] Taking the square root: \[ |\vec{a} - \vec{b}| = \sqrt{2(1 - \cos\theta)} = \sqrt{4\sin^2\left(\frac{\theta}{2}\right)} = 2\sin\left(\frac{\theta}{2}\right) \] 4. **Substituting into the Expression**: Now substituting these values into the original expression: \[ \frac{3|\vec{a} + \vec{b}|}{2} + 2|\vec{a} - \vec{b}| = \frac{3(2\cos\left(\frac{\theta}{2}\right))}{2} + 2(2\sin\left(\frac{\theta}{2}\right)} \] Simplifying: \[ = 3\cos\left(\frac{\theta}{2}\right) + 4\sin\left(\frac{\theta}{2}\right) \] 5. **Finding the Range**: To find the maximum value of \(3\cos\left(\frac{\theta}{2}\right) + 4\sin\left(\frac{\theta}{2}\right)\), we can use the method of Lagrange multipliers or the Cauchy-Schwarz inequality. Let \(x = \cos\left(\frac{\theta}{2}\right)\) and \(y = \sin\left(\frac{\theta}{2}\right)\). Then we have: \[ x^2 + y^2 = 1 \] The expression becomes: \[ 3x + 4y \] The maximum occurs when: \[ \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 \] Therefore, the maximum value of \(3\cos\left(\frac{\theta}{2}\right) + 4\sin\left(\frac{\theta}{2}\right)\) is \(5\). 6. **Conclusion**: The greatest positive integer in the range of the expression is: \[ \boxed{5} \]

To solve the problem, we need to find the greatest positive integer in the range of the expression \(\frac{3|\vec{a} + \vec{b}|}{2} + 2|\vec{a} - \vec{b}|\) given that \(\vec{a}\) and \(\vec{b}\) are unit vectors. ### Step-by-step Solution: 1. **Understanding Unit Vectors**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

Knowledge Check

  • If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is

    A
    `2 sqrt2`
    B
    sqrt2
    C
    2
    D
    4sqrt2
  • Similar Questions

    Explore conceptually related problems

    If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

    If veca" and "vecb are any two vectors such |veca+vecb|=|veca-vecb| find the angle between veca" and "vecb

    if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

    If veca and vecb are unit vectors, then angle between veca and vecb for sqrt3 ​ veca − vec b to be unit vector is

    If veca and vecb are any two vectors of magnitudes 1and 2. respectively, and (1-3veca.vecb)^(2)+|2veca+vecb+3(vecaxxvecb)|^(2)=47 then the angle between veca and vecb is

    If veca and vecb are any two vectors of magnitudes 1and 2. respectively, and (1-3veca.vecb)^(2)+|2veca+vecb+3(vecaxxvecb)|^(2)=47 then the angle between veca and vecb is

    If veca, vecb are unit vertors such that veca -vecb is also a unit vector, then the angle between veca and vecb , is