Home
Class 12
MATHS
inte^(tanx)(secx-sinx)dx is equal to...

`inte^(tanx)(secx-sinx)dx` is equal to

A

`e^(tanx)cosx +C`

B

`e^(tanx)sinx +C`

C

`-e^(tanx)cosx +C`

D

`e^(tanx)sec x +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\tan x} (\sec x - \sin x) \, dx \), we can break it down into two separate integrals: \[ \int e^{\tan x} \sec x \, dx - \int e^{\tan x} \sin x \, dx \] ### Step 1: Solve the first integral \( \int e^{\tan x} \sec x \, dx \) We will denote this integral as \( I_1 = \int e^{\tan x} \sec x \, dx \). ### Step 2: Solve the second integral \( \int e^{\tan x} \sin x \, dx \) We will denote this integral as \( I_2 = \int e^{\tan x} \sin x \, dx \). ### Step 3: Apply Integration by Parts to \( I_2 \) For the integral \( I_2 \), we will use integration by parts, where we let: - \( u = \sin x \) and \( dv = e^{\tan x} \, dx \) Now we need to find \( du \) and \( v \): - \( du = \cos x \, dx \) - To find \( v \), we need to integrate \( dv \): Using the substitution \( w = \tan x \), we have \( dw = \sec^2 x \, dx \), so: \[ v = \int e^{\tan x} \, dx = e^{\tan x} \] ### Step 4: Apply the Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we get: \[ I_2 = \sin x \cdot e^{\tan x} - \int e^{\tan x} \cos x \, dx \] ### Step 5: Substitute back into the original integral Now substituting \( I_2 \) back into the original integral: \[ \int e^{\tan x} (\sec x - \sin x) \, dx = I_1 - \left( \sin x \cdot e^{\tan x} - \int e^{\tan x} \cos x \, dx \right) \] ### Step 6: Combine the integrals Now we have: \[ \int e^{\tan x} \sec x \, dx - \sin x \cdot e^{\tan x} + \int e^{\tan x} \cos x \, dx \] ### Step 7: Simplify Notice that \( I_1 \) and \( \int e^{\tan x} \sec x \, dx \) will cancel each other out: \[ I_1 - I_1 + \int e^{\tan x} \cos x \, dx - \sin x \cdot e^{\tan x} = -\sin x \cdot e^{\tan x} + C \] ### Final Answer Thus, the final answer is: \[ \int e^{\tan x} (\sec x - \sin x) \, dx = e^{\tan x} \cos x + C \]

To solve the integral \( \int e^{\tan x} (\sec x - \sin x) \, dx \), we can break it down into two separate integrals: \[ \int e^{\tan x} \sec x \, dx - \int e^{\tan x} \sin x \, dx \] ### Step 1: Solve the first integral \( \int e^{\tan x} \sec x \, dx \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

inte^(-x)(1-tanx)secx dx is equal to

int(1)/(cosx-sinx)dx is equal to

int(dx)/(cosx+sinx) is equal to

int(In(tanx))/(sinx cosx)dx " is equal to "

int(sqrt(tanx))/(sinxcosx)dx is equal to.

int(cos4x-1)/(cotx-tanx)dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

int(secx)/(sqrt(cos2x)) dx is equal to

The value of int_0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)tanx|+|sin^(-1)sinx|)dx is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |