Home
Class 12
MATHS
inte^(tanx)(secx-sinx)dx is equal to...

`inte^(tanx)(secx-sinx)dx` is equal to

A

`e^(tanx)cosx +C`

B

`e^(tanx)sinx +C`

C

`-e^(tanx)cosx +C`

D

`e^(tanx)sec x +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\tan x} (\sec x - \sin x) \, dx \), we can break it down into two separate integrals: \[ \int e^{\tan x} \sec x \, dx - \int e^{\tan x} \sin x \, dx \] ### Step 1: Solve the first integral \( \int e^{\tan x} \sec x \, dx \) We will denote this integral as \( I_1 = \int e^{\tan x} \sec x \, dx \). ### Step 2: Solve the second integral \( \int e^{\tan x} \sin x \, dx \) We will denote this integral as \( I_2 = \int e^{\tan x} \sin x \, dx \). ### Step 3: Apply Integration by Parts to \( I_2 \) For the integral \( I_2 \), we will use integration by parts, where we let: - \( u = \sin x \) and \( dv = e^{\tan x} \, dx \) Now we need to find \( du \) and \( v \): - \( du = \cos x \, dx \) - To find \( v \), we need to integrate \( dv \): Using the substitution \( w = \tan x \), we have \( dw = \sec^2 x \, dx \), so: \[ v = \int e^{\tan x} \, dx = e^{\tan x} \] ### Step 4: Apply the Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we get: \[ I_2 = \sin x \cdot e^{\tan x} - \int e^{\tan x} \cos x \, dx \] ### Step 5: Substitute back into the original integral Now substituting \( I_2 \) back into the original integral: \[ \int e^{\tan x} (\sec x - \sin x) \, dx = I_1 - \left( \sin x \cdot e^{\tan x} - \int e^{\tan x} \cos x \, dx \right) \] ### Step 6: Combine the integrals Now we have: \[ \int e^{\tan x} \sec x \, dx - \sin x \cdot e^{\tan x} + \int e^{\tan x} \cos x \, dx \] ### Step 7: Simplify Notice that \( I_1 \) and \( \int e^{\tan x} \sec x \, dx \) will cancel each other out: \[ I_1 - I_1 + \int e^{\tan x} \cos x \, dx - \sin x \cdot e^{\tan x} = -\sin x \cdot e^{\tan x} + C \] ### Final Answer Thus, the final answer is: \[ \int e^{\tan x} (\sec x - \sin x) \, dx = e^{\tan x} \cos x + C \]

To solve the integral \( \int e^{\tan x} (\sec x - \sin x) \, dx \), we can break it down into two separate integrals: \[ \int e^{\tan x} \sec x \, dx - \int e^{\tan x} \sin x \, dx \] ### Step 1: Solve the first integral \( \int e^{\tan x} \sec x \, dx \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

inte^(-x)(1-tanx)secx dx is equal to

int(1)/(cosx-sinx)dx is equal to

int(dx)/(cosx+sinx) is equal to

int(In(tanx))/(sinx cosx)dx " is equal to "

int(sqrt(tanx))/(sinxcosx)dx is equal to.

int(cos4x-1)/(cotx-tanx)dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

int(secx)/(sqrt(cos2x)) dx is equal to

The value of int_0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)tanx|+|sin^(-1)sinx|)dx is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to