Home
Class 12
MATHS
Evaluate int xsin^(2)x dx...

Evaluate `int xsin^(2)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x \sin^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \), we can rewrite the integral: \[ \int x \sin^2 x \, dx = \int x \left( \frac{1 - \cos(2x)}{2} \right) \, dx = \frac{1}{2} \int x \, dx - \frac{1}{2} \int x \cos(2x) \, dx \] ### Step 2: Evaluate the first integral The first integral can be easily computed: \[ \frac{1}{2} \int x \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] ### Step 3: Evaluate the second integral using integration by parts For the second integral \( \int x \cos(2x) \, dx \), we will use integration by parts. Let: - \( u = x \) (which implies \( du = dx \)) - \( dv = \cos(2x) \, dx \) (which implies \( v = \frac{1}{2} \sin(2x) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x \cos(2x) \, dx = x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx \] ### Step 4: Evaluate the integral of \( \sin(2x) \) The integral of \( \sin(2x) \) is: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) \] Thus, \[ \int x \cos(2x) \, dx = \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) \] ### Step 5: Substitute back into the equation Now substituting back into our expression for \( \int x \sin^2 x \, dx \): \[ \int x \sin^2 x \, dx = \frac{x^2}{4} - \frac{1}{2} \left( \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) \right) \] This simplifies to: \[ \int x \sin^2 x \, dx = \frac{x^2}{4} - \frac{x}{4} \sin(2x) - \frac{1}{8} \cos(2x) + C \] ### Final Answer Thus, the final result is: \[ \int x \sin^2 x \, dx = \frac{x^2}{4} - \frac{x}{4} \sin(2x) + \frac{1}{8} \cos(2x) + C \]

To evaluate the integral \( \int x \sin^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \), we can rewrite the integral: \[ \int x \sin^2 x \, dx = \int x \left( \frac{1 - \cos(2x)}{2} \right) \, dx = \frac{1}{2} \int x \, dx - \frac{1}{2} \int x \cos(2x) \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int xsin^(-1)\ x\ \ dx

Evaluate : int x " sin"^(2) " x dx "

Evaluate : int x " sin"^(2) " x dx "

Evaluate: inte^xsin^2x\ dx

Evaluate int x^(2) cos x dx

Evaluate : int (x^(2)) dx

Evaluate: inttan^2xsin^2x dx

Evaluate: intsin3xsin2x\ dx

Evaluate: (i) int(xsin^(-1)x^2)/(sqrt(1-x^4))\ dx (ii) intx^3sin(x^4+1)\ dx

Evaluate int\x^5(2-x)\dx