Home
Class 12
MATHS
int(cosec^2x-2005)/cos^[2005]x.dx...

`int(cosec^2x-2005)/cos^[2005]x.dx`

A

`(cotx)/((cosx)^(2005))+c`

B

`(tan x)/((cosx)^(2005))+c`

C

`(-(tan x))/((cosx)^(2005))+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\csc^2 x - 2005}{\cos^{2005} x} \, dx\), we can break it down step by step. ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ I = \int \frac{\csc^2 x}{\cos^{2005} x} \, dx - 2005 \int \frac{1}{\cos^{2005} x} \, dx \] ### Step 2: Simplify the First Integral Recall that \(\csc^2 x = \frac{1}{\sin^2 x}\) and \(\sin^2 x = 1 - \cos^2 x\). Thus: \[ I_1 = \int \frac{\csc^2 x}{\cos^{2005} x} \, dx = \int \frac{1}{\sin^2 x \cos^{2005} x} \, dx \] ### Step 3: Use Integration by Parts For the first integral, we can use integration by parts. Let: - \(u = \cos^{-2005} x\) (which is easier to differentiate) - \(dv = \csc^2 x \, dx\) Then, we differentiate \(u\) and integrate \(dv\): - \(du = 2005 \cos^{-2006} x \sin x \, dx\) - \(v = -\cot x\) Using integration by parts: \[ I_1 = u v - \int v \, du \] Substituting the values: \[ I_1 = -\cot x \cdot \cos^{-2005} x - \int (-\cot x) \cdot (2005 \cos^{-2006} x \sin x) \, dx \] ### Step 4: Simplify the Integral Now we can simplify the second integral: \[ I_1 = -\frac{\cot x}{\cos^{2005} x} + 2005 \int \frac{\sin x}{\cos^{2006} x} \, dx \] ### Step 5: Solve the Second Integral The second integral can be rewritten as: \[ I_2 = \int \frac{\sin x}{\cos^{2006} x} \, dx \] This can be solved by substitution. Let \(u = \cos x\), then \(du = -\sin x \, dx\): \[ I_2 = -\int u^{-2006} \, du = \frac{u^{-2005}}{2005} + C = \frac{1}{2005 \cos^{2005} x} + C \] ### Step 6: Combine All Parts Now combining everything back together: \[ I = -\frac{\cot x}{\cos^{2005} x} + 2005 \left( \frac{1}{2005 \cos^{2005} x} \right) + C \] The \(2005\) cancels out: \[ I = -\frac{\cot x}{\cos^{2005} x} + \frac{1}{\cos^{2005} x} + C \] ### Final Result Thus, the final result of the integral is: \[ I = -\frac{\cot x}{\cos^{2005} x} + C \]

To solve the integral \(\int \frac{\csc^2 x - 2005}{\cos^{2005} x} \, dx\), we can break it down step by step. ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ I = \int \frac{\csc^2 x}{\cos^{2005} x} \, dx - 2005 \int \frac{1}{\cos^{2005} x} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(cos e c^2x-2005)/(cos^(2005)x)dx is equal to (a) -(cotx)/((cosx)^(2005))+c (b) (tanx)/((cosx)^(2005))+c (c) -(tanx)/((cosx)^(2005)+c (d) none of these

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

int (sec^2x)/(cosec^2x) dx

Evaluate : (i) int (cos2x+2sin^2x)/(sin^2x)dx (ii) int(2cos^2x-cos2x)/(cos^2x)dx

int cosec^(2)(x)/(3)dx

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

int(1+cos 2x)/(1-cos 2x)dx

int(1+sin2x)/(cos^2x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is