Home
Class 12
MATHS
The value of int (dx)/((1+sqrtx)(sqrt(x-...

The value of `int (dx)/((1+sqrtx)(sqrt(x-x^2)))` is equal to

A

`(1+sqrt(x))/((1-x)^(2))+c`

B

`(1+sqrt(x))/((1+x)^(2))+c`

C

`(1-sqrt(x))/((1-x)^(2))+c`

D

`(2(sqrt(x)-1))/(sqrt((1-x)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(1 + \sqrt{x})\sqrt{x - x^2}}, \] we will use a substitution to simplify the expression. ### Step 1: Substitution Let \( \sqrt{x} = \sin p \). Then, we have: \[ x = \sin^2 p \quad \text{and} \quad dx = 2\sin p \cos p \, dp = \sin(2p) \, dp. \] ### Step 2: Rewrite the integral Now, we need to rewrite the integral in terms of \( p \): \[ \sqrt{x - x^2} = \sqrt{\sin^2 p - \sin^4 p} = \sqrt{\sin^2 p(1 - \sin^2 p)} = \sqrt{\sin^2 p \cos^2 p} = \sin p \cos p. \] Substituting these into the integral, we get: \[ I = \int \frac{\sin(2p) \, dp}{(1 + \sin p)(\sin p \cos p)}. \] ### Step 3: Simplifying the integral This can be simplified to: \[ I = \int \frac{2 \sin p \cos p \, dp}{(1 + \sin p)(\sin p \cos p)} = 2 \int \frac{dp}{1 + \sin p}. \] ### Step 4: Further simplification To simplify \( \frac{1}{1 + \sin p} \), we can multiply the numerator and denominator by \( 1 - \sin p \): \[ \frac{1 - \sin p}{(1 + \sin p)(1 - \sin p)} = \frac{1 - \sin p}{\cos^2 p}. \] Thus, we have: \[ I = 2 \int \frac{1 - \sin p}{\cos^2 p} \, dp = 2 \int \sec^2 p \, dp - 2 \int \frac{\sin p}{\cos^2 p} \, dp. \] ### Step 5: Integrate The integrals can be computed as follows: 1. \( \int \sec^2 p \, dp = \tan p + C \). 2. \( \int \frac{\sin p}{\cos^2 p} \, dp = -\frac{1}{\cos p} + C \). Thus, we have: \[ I = 2 \left( \tan p + \frac{1}{\cos p} \right) + C. \] ### Step 6: Substitute back Recall that \( \tan p = \frac{\sin p}{\cos p} \) and \( \sin p = \sqrt{x} \), \( \cos p = \sqrt{1 - x} \). Therefore: \[ I = 2 \left( \frac{\sqrt{x}}{\sqrt{1 - x}} + \frac{1}{\sqrt{1 - x}} \right) + C = \frac{2\sqrt{x}}{\sqrt{1 - x}} - \frac{1}{\sqrt{1 - x}} + C. \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{2\sqrt{x} - 1}{\sqrt{1 - x}} + C. \]

To solve the integral \[ I = \int \frac{dx}{(1 + \sqrt{x})\sqrt{x - x^2}}, \] we will use a substitution to simplify the expression. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

Knowledge Check

  • int ( dx)/( sqrt( 2x - x^(2))) is equal to

    A
    `sin^(-1) ( x-1) +C`
    B
    ` sin^(-1) ( x+ 1) + C`
    C
    ` - sqrt( 2x - x^(2)) + C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    inte^(sqrt(x))dx is equal to

    int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

    The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)

    int(dx)/(sqrt(x-x^(2))) equal is :

    int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

    The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

    int (1-x) sqrtx dx