Home
Class 12
MATHS
The value of int (dx)/((1+sqrtx)(sqrt(x-...

The value of `int (dx)/((1+sqrtx)(sqrt(x-x^2)))` is equal to

A

`(1+sqrt(x))/((1-x)^(2))+c`

B

`(1+sqrt(x))/((1+x)^(2))+c`

C

`(1-sqrt(x))/((1-x)^(2))+c`

D

`(2(sqrt(x)-1))/(sqrt((1-x)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(1 + \sqrt{x})\sqrt{x - x^2}}, \] we will use a substitution to simplify the expression. ### Step 1: Substitution Let \( \sqrt{x} = \sin p \). Then, we have: \[ x = \sin^2 p \quad \text{and} \quad dx = 2\sin p \cos p \, dp = \sin(2p) \, dp. \] ### Step 2: Rewrite the integral Now, we need to rewrite the integral in terms of \( p \): \[ \sqrt{x - x^2} = \sqrt{\sin^2 p - \sin^4 p} = \sqrt{\sin^2 p(1 - \sin^2 p)} = \sqrt{\sin^2 p \cos^2 p} = \sin p \cos p. \] Substituting these into the integral, we get: \[ I = \int \frac{\sin(2p) \, dp}{(1 + \sin p)(\sin p \cos p)}. \] ### Step 3: Simplifying the integral This can be simplified to: \[ I = \int \frac{2 \sin p \cos p \, dp}{(1 + \sin p)(\sin p \cos p)} = 2 \int \frac{dp}{1 + \sin p}. \] ### Step 4: Further simplification To simplify \( \frac{1}{1 + \sin p} \), we can multiply the numerator and denominator by \( 1 - \sin p \): \[ \frac{1 - \sin p}{(1 + \sin p)(1 - \sin p)} = \frac{1 - \sin p}{\cos^2 p}. \] Thus, we have: \[ I = 2 \int \frac{1 - \sin p}{\cos^2 p} \, dp = 2 \int \sec^2 p \, dp - 2 \int \frac{\sin p}{\cos^2 p} \, dp. \] ### Step 5: Integrate The integrals can be computed as follows: 1. \( \int \sec^2 p \, dp = \tan p + C \). 2. \( \int \frac{\sin p}{\cos^2 p} \, dp = -\frac{1}{\cos p} + C \). Thus, we have: \[ I = 2 \left( \tan p + \frac{1}{\cos p} \right) + C. \] ### Step 6: Substitute back Recall that \( \tan p = \frac{\sin p}{\cos p} \) and \( \sin p = \sqrt{x} \), \( \cos p = \sqrt{1 - x} \). Therefore: \[ I = 2 \left( \frac{\sqrt{x}}{\sqrt{1 - x}} + \frac{1}{\sqrt{1 - x}} \right) + C = \frac{2\sqrt{x}}{\sqrt{1 - x}} - \frac{1}{\sqrt{1 - x}} + C. \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{2\sqrt{x} - 1}{\sqrt{1 - x}} + C. \]

To solve the integral \[ I = \int \frac{dx}{(1 + \sqrt{x})\sqrt{x - x^2}}, \] we will use a substitution to simplify the expression. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int ( dx)/( sqrt( 2x - x^(2))) is equal to

inte^(sqrt(x))dx is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)

int(dx)/(sqrt(x-x^(2))) equal is :

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

int (1-x) sqrtx dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |