Home
Class 12
MATHS
In triangle A B C ,2a csin(1/2(A-B+C)) i...

In triangle `A B C ,2a csin(1/2(A-B+C))` is equal to `a^2+b^2-c^2` (b) `c^2+a^2-b^2` `b^2-c^2-a^2` (d) `c^2-a^2-b^2`

A

`a^(2) + b^(2) - c^(2)`

B

`c^(2) + a^(2) - b^(2)`

C

`b^(2) - c^(2) - a^(2)`

D

`c^(2) - a^(2) - b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that in triangle \( ABC \), the expression \( 2a c \sin\left(\frac{1}{2}(A - B + C)\right) \) is equal to \( c^2 + a^2 - b^2 \). ### Step-by-Step Solution: 1. **Understand the Angles in Triangle**: We know that in any triangle, the sum of the angles is \( 180^\circ \). Therefore, we can express \( A + B + C = 180^\circ \). From this, we can derive: \[ A + C = 180^\circ - B \] 2. **Rearranging the Angles**: We can rearrange the above equation to find: \[ A + C - B = 180^\circ - 2B \] 3. **Using the Sine Function**: We need to evaluate \( 2a c \sin\left(\frac{1}{2}(A - B + C)\right) \). We can substitute for \( A + C - B \): \[ 2a c \sin\left(\frac{1}{2}(A - B + C)\right) = 2a c \sin\left(\frac{1}{2}(180^\circ - 2B)\right) \] 4. **Applying the Sine Identity**: Using the sine identity \( \sin(90^\circ - x) = \cos(x) \), we have: \[ \sin\left(\frac{1}{2}(180^\circ - 2B)\right) = \cos(B) \] Therefore, we can rewrite our expression as: \[ 2a c \cos(B) \] 5. **Using the Cosine Rule**: According to the cosine rule, we know: \[ \cos(B) = \frac{a^2 + c^2 - b^2}{2ac} \] Substituting this into our expression gives: \[ 2a c \cos(B) = 2a c \left(\frac{a^2 + c^2 - b^2}{2ac}\right) \] 6. **Simplifying the Expression**: The \( 2ac \) in the numerator and denominator cancels out: \[ 2a c \cdot \frac{a^2 + c^2 - b^2}{2ac} = a^2 + c^2 - b^2 \] 7. **Final Result**: Thus, we have shown that: \[ 2a c \sin\left(\frac{1}{2}(A - B + C)\right) = a^2 + c^2 - b^2 \] ### Conclusion: The correct answer is \( c^2 + a^2 - b^2 \), which corresponds to option (b).

To solve the problem, we need to show that in triangle \( ABC \), the expression \( 2a c \sin\left(\frac{1}{2}(A - B + C)\right) \) is equal to \( c^2 + a^2 - b^2 \). ### Step-by-Step Solution: 1. **Understand the Angles in Triangle**: We know that in any triangle, the sum of the angles is \( 180^\circ \). Therefore, we can express \( A + B + C = 180^\circ \). From this, we can derive: \[ A + C = 180^\circ - B ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In triangle A B C ,2a csin(1/2(A-B+C)) is equal to (a) a^2+b^2-c^2 (b) c^2+a^2-b^2 (c) b^2-c^2-a^2 (d) c^2-a^2-b^2

In any A B C , the value of 2a csin((A-B+C)/2) is (a) a^2+b^2-c^2 (b) c^2+a^2-b^2 (c) b^2-c^2-a^2 (d) c^2-a^2-b^2

In a A B C(b csin^2A)/(cos A+cosB cos C) is equal to b^2+C^2 b. b c c. a^2 d. a^2+b c

In a triangle A B C ,\ (a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB is equal to (a^2+b^2-c^2)tanC (b) (a^2+b^2+c^2)tanC (b^2+c^2-a^2)tanC (d) none of these

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c ^2 (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

If any triangle A B C , that: (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

In any triangle A B C , prove that: ("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to