Home
Class 12
MATHS
If theta=pi/(4n) then the value of tanth...

If `theta=pi/(4n)` then the value of `tanthetatan(2theta)tan(3theta)....tan((2n-1)theta)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the product \( \tan(\theta) \tan(2\theta) \tan(3\theta) \ldots \tan((2n-1)\theta) \) given that \( \theta = \frac{\pi}{4n} \). ### Step-by-Step Solution: 1. **Substitute the value of \( \theta \)**: \[ \theta = \frac{\pi}{4n} \] This implies: \[ 2\theta = \frac{\pi}{2n}, \quad 3\theta = \frac{3\pi}{4n}, \quad \ldots, \quad (2n-1)\theta = \frac{(2n-1)\pi}{4n} \] 2. **Evaluate \( \tan(k\theta) \)** for \( k = 1, 2, \ldots, 2n-1 \): - For \( k = 1 \): \[ \tan(\theta) = \tan\left(\frac{\pi}{4n}\right) \] - For \( k = 2 \): \[ \tan(2\theta) = \tan\left(\frac{\pi}{2n}\right) \] - For \( k = 3 \): \[ \tan(3\theta) = \tan\left(\frac{3\pi}{4n}\right) \] - Continuing this way up to \( k = 2n-1 \): \[ \tan((2n-1)\theta) = \tan\left(\frac{(2n-1)\pi}{4n}\right) \] 3. **Using the identity for tangent**: Notice that: \[ \tan\left(\frac{(2n-1)\pi}{4n}\right) = \cot\left(\frac{\pi}{4} - \frac{(2n-1)\pi}{4n}\right) = \cot\left(\frac{\pi}{4n}\right) \] This means: \[ \tan((2n-1)\theta) = \cot(\theta) \] 4. **Relate \( \tan(k\theta) \) and \( \cot(\theta) \)**: For all \( k \): - \( \tan(k\theta) = \tan\left(\frac{k\pi}{4n}\right) \) for \( k = 1, 2, \ldots, 2n-1 \) - The product can be rewritten using the periodic nature of tangent and cotangent functions. 5. **Calculate the product**: The product becomes: \[ \tan\left(\frac{\pi}{4n}\right) \tan\left(\frac{2\pi}{4n}\right) \tan\left(\frac{3\pi}{4n}\right) \ldots \tan\left(\frac{(2n-1)\pi}{4n}\right) \] Each \( \tan(k\theta) \) for \( k = 1, 2, \ldots, 2n-1 \) will yield a value of 1 when evaluated at \( \theta = \frac{\pi}{4n} \). 6. **Final result**: Thus, the entire product simplifies to: \[ \tan(\theta) \tan(2\theta) \tan(3\theta) \ldots \tan((2n-1)\theta) = 1 \] ### Conclusion: The value of \( \tan(\theta) \tan(2\theta) \tan(3\theta) \ldots \tan((2n-1)\theta) \) is \( 1 \).

To solve the problem, we need to find the value of the product \( \tan(\theta) \tan(2\theta) \tan(3\theta) \ldots \tan((2n-1)\theta) \) given that \( \theta = \frac{\pi}{4n} \). ### Step-by-Step Solution: 1. **Substitute the value of \( \theta \)**: \[ \theta = \frac{\pi}{4n} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.12|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If theta_1,theta_2,theta_3 are the three values of thetain[0,2pi] for which tantheta=lambda then the value of tan(theta_1)/3tan(theta_2)/3+tan(theta_2)/3tan(theta_3)/3+tan(theta_3)/3tan(theta_1)/3 is equal to

tan(pi/4+theta)-tan(pi/4-theta)=2tan2theta

Solve: tan4 theta = tan2theta

The value of cot theta-tantheta-2tan2theta-4tan4theta-8cot8theta, is

Solve tantheta+tan2theta+sqrt(3)tanthetatan2theta=sqrt(3)

Solve the equation: tantheta+tan2theta+tanthetatan2theta=1

Prove that: tantheta.tan(60^0-theta).tan(60^0+theta)=tan3thetadot.'

Show that: If theta = (2pi)/7 , prove that tan theta tan2theta + tan2thetatan4theta + tan4thetatantheta = -7

If sec theta+tan theta=(1)/(2) The value of tan theta =

If tan^2 theta = 1-e^2 then the value of sec theta + tan^3 theta cosec theta