Home
Class 12
MATHS
The domain of f(x)=1n(a x^3+(a+b)x^2+(b+...

The domain of `f(x)=1n(a x^3+(a+b)x^2+(b+c)x+c),` where `a >0,b^2-4a c=0,i s(w h e r e[dot]` represetns greatest integer function). `(-1,oo)~(-b/(2a))` (1,`oo)~{-b/(2a)}` `(-1,1)~{-b/(2a)}` `non eoft h e s e`

A

`(-1,oo)~{-(b)/(2a)}`

B

`(1,oo)~{-(b)/(2a)}`

C

`(-1,1)~{-(b)/(2a)}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \ln(ax^3 + (a+b)x^2 + (b+c)x + c) \) given that \( a > 0 \) and \( b^2 - 4ac = 0 \), we need to ensure that the argument of the logarithm is greater than zero. ### Step-by-Step Solution: 1. **Identify the condition for the logarithm:** The natural logarithm \( \ln(x) \) is defined only for \( x > 0 \). Therefore, we need: \[ ax^3 + (a+b)x^2 + (b+c)x + c > 0 \] 2. **Analyze the polynomial:** The polynomial \( ax^3 + (a+b)x^2 + (b+c)x + c \) is a cubic polynomial. Since \( a > 0 \), the leading coefficient is positive, which means the polynomial will tend to \( +\infty \) as \( x \to +\infty \) and \( -\infty \) as \( x \to -\infty \). 3. **Find the roots of the polynomial:** Given \( b^2 - 4ac = 0 \), this indicates that the quadratic part of the polynomial has a double root. We can find the double root using the quadratic formula: \[ x = \frac{-b}{2a} \] This means that the polynomial can be factored as: \[ a(x + \frac{b}{2a})^2 \] Hence, the polynomial can be rewritten as: \[ a(x + \frac{b}{2a})^2 + \text{(linear term)} \] 4. **Determine the sign of the polynomial:** The quadratic term \( (x + \frac{b}{2a})^2 \) is always non-negative and equals zero at \( x = -\frac{b}{2a} \). The linear term will determine the overall sign of the polynomial. 5. **Set the conditions for the domain:** The polynomial is greater than zero for all \( x \) except at the double root \( x = -\frac{b}{2a} \). Therefore, we need to exclude this point from our domain. 6. **Combine the conditions:** Since the polynomial is a cubic function with a double root, the domain of \( f(x) \) is: \[ x \in (-1, \infty) \setminus \left\{-\frac{b}{2a}\right\} \] ### Final Domain: Thus, the domain of the function \( f(x) \) is: \[ (-1, \infty) \setminus \left\{-\frac{b}{2a}\right\} \]

To find the domain of the function \( f(x) = \ln(ax^3 + (a+b)x^2 + (b+c)x + c) \) given that \( a > 0 \) and \( b^2 - 4ac = 0 \), we need to ensure that the argument of the logarithm is greater than zero. ### Step-by-Step Solution: 1. **Identify the condition for the logarithm:** The natural logarithm \( \ln(x) \) is defined only for \( x > 0 \). Therefore, we need: \[ ax^3 + (a+b)x^2 + (b+c)x + c > 0 ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Discuss the differentiability of f(x)= [x] +|1-x| , x in (-1,3),w h e r e[dot] represents greatest integer function.

Discuss the differentiability of f(x)=[x]+|1-x|, x in (-1,3),w h e r e[dot] represents greatest integer function.

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  2. The domain of the function f(x)=sqrt(1n((|x|-1))(x^2+4x+4)) is (-3,-1...

    Text Solution

    |

  3. The domain of f(x)=1n(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,...

    Text Solution

    |

  4. The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is (a)(7...

    Text Solution

    |

  5. The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

    Text Solution

    |

  6. f(x)=sqrt(x^(12)-x^(9)+x^(4)-x+1)

    Text Solution

    |

  7. The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

    Text Solution

    |

  8. Which one of following best represents the graph of y=x^(logx pi)

    Text Solution

    |

  9. If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3)...

    Text Solution

    |

  10. The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

    Text Solution

    |

  11. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  12. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |

  13. The range of function f(x)=^(7-x)P(x-3)i s (a) {1,2,3} (b) {1,2...

    Text Solution

    |

  14. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  15. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  16. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |

  17. The range of the function f defined by f(x)=[1/(sin{x})] (where [.] an...

    Text Solution

    |

  18. Range of function f(x) = cos (k sin x) is [-1, 1], then the least posi...

    Text Solution

    |

  19. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |

  20. The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a){0,1+pi/2} ...

    Text Solution

    |