Home
Class 12
MATHS
Let f(x)=sec^(-1)[1+cos^(2)x], where [.]...

Let `f(x)=sec^(-1)[1+cos^(2)x],` where [.] denotes the greatest integer function. Then the

A

domain of `f` is R

B

domain of `f` is `[1,2]`

C

domain of `f` is `[1,2]`

D

range of `f " is " {sec^(-1) 1, sec^(-1)2}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sec^{-1}[1 + \cos^2 x] \), where \([.]\) denotes the greatest integer function. We will find the domain and range of this function step by step. ### Step 1: Determine the Domain of \( f(x) \) The function \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). Therefore, we need to find the values of \( x \) for which: \[ 1 + \cos^2 x \leq -1 \quad \text{or} \quad 1 + \cos^2 x \geq 1 \] #### Analysis of \( 1 + \cos^2 x \) 1. **For \( 1 + \cos^2 x \leq -1 \)**: - This inequality is impossible because \( \cos^2 x \) is always non-negative (i.e., \( \cos^2 x \geq 0 \)). - Therefore, \( 1 + \cos^2 x \) is always at least 1. 2. **For \( 1 + \cos^2 x \geq 1 \)**: - This inequality is always true since \( \cos^2 x \geq 0 \). Thus, the function \( f(x) \) is defined for all \( x \in \mathbb{R} \). ### Step 2: Determine the Range of \( f(x) \) Next, we need to find the range of \( f(x) \). Since we have established that \( f(x) = \sec^{-1}[1 + \cos^2 x] \), we need to analyze the expression \( 1 + \cos^2 x \). 1. **Finding the range of \( 1 + \cos^2 x \)**: - The minimum value of \( \cos^2 x \) is 0 (when \( \cos x = 0 \)), which gives: \[ 1 + \cos^2 x \geq 1 + 0 = 1 \] - The maximum value of \( \cos^2 x \) is 1 (when \( \cos x = \pm 1 \)), which gives: \[ 1 + \cos^2 x \leq 1 + 1 = 2 \] - Therefore, \( 1 + \cos^2 x \) varies between 1 and 2: \[ 1 \leq 1 + \cos^2 x \leq 2 \] 2. **Applying the greatest integer function**: - The greatest integer function \([1 + \cos^2 x]\) can take values: - When \( 1 + \cos^2 x \) is in the interval \([1, 2)\), \([1 + \cos^2 x] = 1\). - When \( 1 + \cos^2 x = 2\), \([1 + \cos^2 x] = 2\). Thus, \([1 + \cos^2 x]\) can take values 1 or 2. 3. **Finding the range of \( f(x) \)**: - For \([1 + \cos^2 x] = 1\): \[ f(x) = \sec^{-1}(1) = 0 \] - For \([1 + \cos^2 x] = 2\): \[ f(x) = \sec^{-1}(2) \] - Therefore, the range of \( f(x) \) is \( \{0, \sec^{-1}(2)\} \). ### Conclusion - **Domain**: \( x \in \mathbb{R} \) - **Range**: \( \{0, \sec^{-1}(2)\} \)

To solve the problem, we need to analyze the function \( f(x) = \sec^{-1}[1 + \cos^2 x] \), where \([.]\) denotes the greatest integer function. We will find the domain and range of this function step by step. ### Step 1: Determine the Domain of \( f(x) \) The function \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). Therefore, we need to find the values of \( x \) for which: \[ 1 + \cos^2 x \leq -1 \quad \text{or} \quad 1 + \cos^2 x \geq 1 ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is (a) x epsilon R, x not an integer (b) x epsilon (-oo, -2)uu[-1,oo) (c) x epsilon R, x!=-2 (d) x epsilon (-oo,-1]

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  2. Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is...

    Text Solution

    |

  3. If f: RvecNuu{0}, where f (area of triangle joining points P(5,0),Q(8,...

    Text Solution

    |

  4. The domain of the function f(x)=log(e){log(|sinx|)(x^(2)-8x+23)-(3)/...

    Text Solution

    |

  5. Let f(x)=sgn(cot^(-1)x)+tan(pi/2[x]), where [x] is the greatest intege...

    Text Solution

    |

  6. f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

    Text Solution

    |

  7. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  8. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  9. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  10. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  11. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  12. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  13. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  14. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  15. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  16. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  17. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  18. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  19. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  20. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |