Home
Class 12
MATHS
Let f(x)=sec^(-1)[1+cos^(2)x], where [.]...

Let `f(x)=sec^(-1)[1+cos^(2)x],` where [.] denotes the greatest integer function. Then the

A

domain of `f` is R

B

domain of `f` is `[1,2]`

C

domain of `f` is `[1,2]`

D

range of `f " is " {sec^(-1) 1, sec^(-1)2}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sec^{-1}[1 + \cos^2 x] \), where \([.]\) denotes the greatest integer function. We will find the domain and range of this function step by step. ### Step 1: Determine the Domain of \( f(x) \) The function \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). Therefore, we need to find the values of \( x \) for which: \[ 1 + \cos^2 x \leq -1 \quad \text{or} \quad 1 + \cos^2 x \geq 1 \] #### Analysis of \( 1 + \cos^2 x \) 1. **For \( 1 + \cos^2 x \leq -1 \)**: - This inequality is impossible because \( \cos^2 x \) is always non-negative (i.e., \( \cos^2 x \geq 0 \)). - Therefore, \( 1 + \cos^2 x \) is always at least 1. 2. **For \( 1 + \cos^2 x \geq 1 \)**: - This inequality is always true since \( \cos^2 x \geq 0 \). Thus, the function \( f(x) \) is defined for all \( x \in \mathbb{R} \). ### Step 2: Determine the Range of \( f(x) \) Next, we need to find the range of \( f(x) \). Since we have established that \( f(x) = \sec^{-1}[1 + \cos^2 x] \), we need to analyze the expression \( 1 + \cos^2 x \). 1. **Finding the range of \( 1 + \cos^2 x \)**: - The minimum value of \( \cos^2 x \) is 0 (when \( \cos x = 0 \)), which gives: \[ 1 + \cos^2 x \geq 1 + 0 = 1 \] - The maximum value of \( \cos^2 x \) is 1 (when \( \cos x = \pm 1 \)), which gives: \[ 1 + \cos^2 x \leq 1 + 1 = 2 \] - Therefore, \( 1 + \cos^2 x \) varies between 1 and 2: \[ 1 \leq 1 + \cos^2 x \leq 2 \] 2. **Applying the greatest integer function**: - The greatest integer function \([1 + \cos^2 x]\) can take values: - When \( 1 + \cos^2 x \) is in the interval \([1, 2)\), \([1 + \cos^2 x] = 1\). - When \( 1 + \cos^2 x = 2\), \([1 + \cos^2 x] = 2\). Thus, \([1 + \cos^2 x]\) can take values 1 or 2. 3. **Finding the range of \( f(x) \)**: - For \([1 + \cos^2 x] = 1\): \[ f(x) = \sec^{-1}(1) = 0 \] - For \([1 + \cos^2 x] = 2\): \[ f(x) = \sec^{-1}(2) \] - Therefore, the range of \( f(x) \) is \( \{0, \sec^{-1}(2)\} \). ### Conclusion - **Domain**: \( x \in \mathbb{R} \) - **Range**: \( \{0, \sec^{-1}(2)\} \)

To solve the problem, we need to analyze the function \( f(x) = \sec^{-1}[1 + \cos^2 x] \), where \([.]\) denotes the greatest integer function. We will find the domain and range of this function step by step. ### Step 1: Determine the Domain of \( f(x) \) The function \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). Therefore, we need to find the values of \( x \) for which: \[ 1 + \cos^2 x \leq -1 \quad \text{or} \quad 1 + \cos^2 x \geq 1 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is (a) x epsilon R, x not an integer (b) x epsilon (-oo, -2)uu[-1,oo) (c) x epsilon R, x!=-2 (d) x epsilon (-oo,-1]

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be