Home
Class 12
MATHS
If A+B+C=180^0, prove that : cos^2 (A/2)...

If `A+B+C=180^0`, prove that : `cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)`

Text Solution

AI Generated Solution

To prove the identity \( \cos^2 \left( \frac{A}{2} \right) + \cos^2 \left( \frac{B}{2} \right) - \cos^2 \left( \frac{C}{2} \right) = 2 \cos \left( \frac{A}{2} \right) \cos \left( \frac{B}{2} \right) \sin \left( \frac{C}{2} \right) \) given that \( A + B + C = 180^\circ \), we can follow these steps: ### Step 1: Use the given condition Since \( A + B + C = 180^\circ \), we can express \( C \) in terms of \( A \) and \( B \): \[ C = 180^\circ - (A + B) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

If A+B+C=180^@ , then prove that cos^2 A + cos^2 B +cos^2 C=1-2cosA cosB cosC .

In any A B C , prove that: 2{b cos^2(C/2) + c cos^2(B/2)}=a+c+b

If A+B+C=2S , prove that : cos^2 S + cos^2 (S-A) + cos^2 (S-B) + cos^2 (S-C) = 2+2cosA cosB cosC .

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

In any DeltaABC , prove that : (cos^2(A/2))/a + (cos^2(B/2))/b + (cos^2(C/2))/c = s^2/(abc)

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2