Home
Class 12
MATHS
Let x,y in R, then find the maximum and ...

Let `x,y in R`, then find the maximum and minimum values of expression `(x^(2)+y^(2))/(x^(2)+xy+4y^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the expression \[ E = \frac{x^2 + y^2}{x^2 + xy + 4y^2}, \] we can use a trigonometric substitution. Let's follow the steps: ### Step 1: Substitute Variables Let \( x = r \cos \theta \) and \( y = r \sin \theta \), where \( r \) is a positive real number. This substitution helps to express the variables in terms of angles, which simplifies the expression. ### Step 2: Rewrite the Expression Substituting \( x \) and \( y \) into the expression \( E \): \[ E = \frac{(r \cos \theta)^2 + (r \sin \theta)^2}{(r \cos \theta)^2 + (r \cos \theta)(r \sin \theta) + 4(r \sin \theta)^2}. \] ### Step 3: Simplify the Numerator The numerator becomes: \[ E = \frac{r^2 (\cos^2 \theta + \sin^2 \theta)}{(r^2 \cos^2 \theta + r^2 \cos \theta \sin \theta + 4r^2 \sin^2 \theta)}. \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we have: \[ E = \frac{r^2}{r^2 (\cos^2 \theta + \cos \theta \sin \theta + 4 \sin^2 \theta)} = \frac{1}{\cos^2 \theta + \cos \theta \sin \theta + 4 \sin^2 \theta}. \] ### Step 4: Set Up the Denominator Let \( D = \cos^2 \theta + \cos \theta \sin \theta + 4 \sin^2 \theta \). We need to analyze \( D \) to find its maximum and minimum values. ### Step 5: Rewrite \( D \) We can rewrite \( D \) as: \[ D = 4 \sin^2 \theta + \cos^2 \theta + \cos \theta \sin \theta. \] ### Step 6: Use Trigonometric Identities Using the double angle identity, we can express \( \cos \theta \sin \theta \) as \( \frac{1}{2} \sin 2\theta \): \[ D = 4 \sin^2 \theta + \cos^2 \theta + \frac{1}{2} \sin 2\theta. \] ### Step 7: Substitute \( \cos^2 \theta \) Using \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ D = 4 \sin^2 \theta + (1 - \sin^2 \theta) + \frac{1}{2} \sin 2\theta = 3 \sin^2 \theta + 1 + \frac{1}{2} \sin 2\theta. \] ### Step 8: Analyze \( D \) To find the maximum and minimum values of \( D \), we can differentiate with respect to \( \theta \) or analyze it directly. The maximum and minimum values of \( D \) can be determined by finding the critical points. ### Step 9: Find Maximum and Minimum of \( E \) The maximum value of \( E \) occurs when \( D \) is minimized, and the minimum value of \( E \) occurs when \( D \) is maximized. ### Step 10: Conclusion After analyzing \( D \), we find that the minimum value of \( E \) is \( \frac{2}{5 - \sqrt{10}} \) and the maximum value of \( E \) is \( \frac{2}{5 + \sqrt{10}} \). ### Final Answer Thus, the maximum and minimum values of the expression are: - Maximum value: \( \frac{2}{5 - \sqrt{10}} \) - Minimum value: \( \frac{2}{5 + \sqrt{10}} \)

To find the maximum and minimum values of the expression \[ E = \frac{x^2 + y^2}{x^2 + xy + 4y^2}, \] we can use a trigonometric substitution. Let's follow the steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If 'x' be real, find the maximum and minimum value of : y=(x+2)/(2x^(2)+3x+6)

Find the maximum or minimum values of the following expressions on R 2x + 5 – 3x^(2)

Find the maximum and minimum value of y = asin^2x + b sinx.cosx + c cos^2x

If x+y=1 then find the maximum value of the function xy^2

If xy=1 , then minimum value of x ^(2) + y^(2) is :

Find the minimum and maximum values of y in 4x^2 + 12xy + 10y^2-4y + 3 = 0

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y x^2=4 then find the xamimum value of (x^3+y^3)/(x+y)

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.