Home
Class 12
MATHS
If cos(A-B)=3/5 and tanAtanB=2 then...

If `cos(A-B)=3/5` and `tanAtanB=2` then

A

`cosA cos B = 1/5`

B

`sin A sin B=-2/5`

C

`cosA cos B=-1/5`

D

`sin A sin B= 1//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow a systematic approach using trigonometric identities and the information provided. ### Step 1: Write down the given information We are given: 1. \( \cos(A - B) = \frac{3}{5} \) 2. \( \tan A \tan B = 2 \) ### Step 2: Apply the cosine difference formula Using the cosine difference formula: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Substituting the given value: \[ \cos A \cos B + \sin A \sin B = \frac{3}{5} \tag{1} \] ### Step 3: Express \( \tan A \tan B \) in terms of sine and cosine We know that: \[ \tan A = \frac{\sin A}{\cos A} \quad \text{and} \quad \tan B = \frac{\sin B}{\cos B} \] Thus: \[ \tan A \tan B = \frac{\sin A \sin B}{\cos A \cos B} = 2 \] Rearranging gives: \[ \sin A \sin B = 2 \cos A \cos B \tag{2} \] ### Step 4: Substitute equation (2) into equation (1) Now, substitute \( \sin A \sin B \) from equation (2) into equation (1): \[ \cos A \cos B + 2 \cos A \cos B = \frac{3}{5} \] This simplifies to: \[ 3 \cos A \cos B = \frac{3}{5} \] ### Step 5: Solve for \( \cos A \cos B \) Dividing both sides by 3: \[ \cos A \cos B = \frac{1}{5} \tag{3} \] ### Step 6: Find \( \sin A \sin B \) Using equation (2) again: \[ \sin A \sin B = 2 \cos A \cos B \] Substituting the value from equation (3): \[ \sin A \sin B = 2 \times \frac{1}{5} = \frac{2}{5} \tag{4} \] ### Step 7: Conclusion From equations (3) and (4), we have: - \( \cos A \cos B = \frac{1}{5} \) - \( \sin A \sin B = \frac{2}{5} \) Thus, the values of \( \cos A \cos B \) and \( \sin A \sin B \) are determined.

To solve the problem, we will follow a systematic approach using trigonometric identities and the information provided. ### Step 1: Write down the given information We are given: 1. \( \cos(A - B) = \frac{3}{5} \) 2. \( \tan A \tan B = 2 \) ### Step 2: Apply the cosine difference formula ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If cos(A-B)=3/5 and tan A tan B=2, then (a) cos Acos B=1/5 (b) sin A sin B=-2/5 (c) cos AcosB=-1/5 (d) sin A sinB=-1/5

If cos(A-B)=3/5 and tanA tanB=2, then a.cos A cosB=1/5 b. cosA cos B= -1/5 c. sin A sin B= -1/5 d. sin A sin B= -1/5

If cosA=4/5 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where A , B ((3pi)/(2) to 2pi ) .

Let A , B , C be the three angles such that A+B+C=pi . If tanA.tanB=2, then find the value of (cosAcosB)/(cosC)

If cos A=1/2 and sin B =1/sqrt2 , find the value of : (tanA-tanB)/(1+tanAtanB) : Here angles A and B from different right triangle .

If cosA=-24/25 and cos B=3/5 where pi < A < (3pi)/2 and (3pi)/2 < B < 2pi then find cos(A+B)

If cosA=-24/25 and cos B=3/5 where pi < A < (3pi)/2 and (3pi)/2 < B < 2pi then find sin(A+B)

If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

If A and B are acute angles such that tanA=1/2 , tanB=1/3 and tan(A+B)=(tanA+tan\ B)/(1-tanAtanB) , find A+B .

In an actue-angled triangle ABC Statement-1: tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/(2)ge1 Statement-2: tanAtanB tanCge3sqrt3