Home
Class 12
MATHS
Let A and B denote the statements A : ...

Let `A and B` denote the statements
`A : cos alpha + cos beta + cos gamma =0`
`B : sin alpha + siin beta + sin gamma = 0`
If `cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2)`,
then

A

`A` is true and `B` is false.

B

`A` is false and `B` is true.

C

Both `A and B` are true.

D

Both `A and B` are false.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations and statements step by step. ### Step 1: Understand the Given Information We are given two statements: - Statement A: \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) - Statement B: \( \sin \alpha + \sin \beta + \sin \gamma = 0 \) We also have the equation: \[ \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2} \] ### Step 2: Use the Cosine Addition Formula We can use the cosine subtraction formula: \[ \cos(x - y) = \cos x \cos y + \sin x \sin y \] Applying this to our equation: \[ \cos(\beta - \gamma) = \cos \beta \cos \gamma + \sin \beta \sin \gamma \] \[ \cos(\gamma - \alpha) = \cos \gamma \cos \alpha + \sin \gamma \sin \alpha \] \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] ### Step 3: Substitute into the Equation Substituting these into the original equation gives: \[ (\cos \beta \cos \gamma + \sin \beta \sin \gamma) + (\cos \gamma \cos \alpha + \sin \gamma \sin \alpha) + (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = -\frac{3}{2} \] ### Step 4: Combine Like Terms Combining the terms, we have: \[ \cos \beta \cos \gamma + \cos \gamma \cos \alpha + \cos \alpha \cos \beta + \sin \beta \sin \gamma + \sin \gamma \sin \alpha + \sin \alpha \sin \beta = -\frac{3}{2} \] ### Step 5: Use the Identity for the Sum of Cosines We can rewrite the left-hand side using the identity for the sum of cosines: \[ \cos \beta \cos \gamma + \cos \gamma \cos \alpha + \cos \alpha \cos \beta = \frac{1}{2} \left( (\cos \alpha + \cos \beta + \cos \gamma)^2 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) \right) \] And similarly for the sine terms: \[ \sin \beta \sin \gamma + \sin \gamma \sin \alpha + \sin \alpha \sin \beta = \frac{1}{2} \left( (\sin \alpha + \sin \beta + \sin \gamma)^2 - (\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma) \right) \] ### Step 6: Analyze the Result From the given equation, we know that: \[ \cos \alpha + \cos \beta + \cos \gamma = 0 \quad \text{and} \quad \sin \alpha + \sin \beta + \sin \gamma = 0 \] Thus, both statements A and B are satisfied. ### Conclusion Both statements A and B are true based on the given conditions.

To solve the problem, we need to analyze the given equations and statements step by step. ### Step 1: Understand the Given Information We are given two statements: - Statement A: \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) - Statement B: \( \sin \alpha + \sin \beta + \sin \gamma = 0 \) We also have the equation: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let A and B denote the statements A: "cos"alpha+"cos"beta+"cos"gamma=""0 B : "sin"alpha+"sin"beta+"sin"gamma=""0 If cos(beta-gamma)""+""cos(gamma-alpha)""+""cos(alpha-beta)""=""""-(3//2) , then (1) A is true and B is false (2) A is false and B is true (3) both A and B are true (4) both A and B are false

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If cos alpha + cos beta + cos gamma = 0 and also sin alpha + sin beta + sin gamma= 0, then prove that: cos 3 alpha + cos 3beta + cos 3gamma = 3 cos (alpha + beta + gamma)

If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 sin gamma y = 0 , then the value of sin 3alpha + 8 sin 3beta + 27 sin 3gamma is

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

If sin alpha+ sin beta+ sin gamma=3, then sin^3alpha+sin^3beta+sin^3 gamma=

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gamma and b/c+c/a+a/b=1, then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to