Home
Class 12
MATHS
Let f : (-1, 1) -> R be such that f(cos4...

Let `f : (-1, 1) -> R` be such that `f(cos4theta) = 2/(2-sec^2theta` for `theta in (0, pi/4) uu (pi/4, pi/2)`. Then the value(s) of `f(1/3)` is/are

A

`1-sqrt((3)/(2))`

B

`1+sqrt((3)/(2))`

C

`1-sqrt((2)/(3))`

D

`1+sqrt((2)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{1}{3}\right) \) given that \( f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta} \) for \( \theta \) in the intervals \( (0, \frac{\pi}{4}) \) and \( (\frac{\pi}{4}, \frac{\pi}{2}) \). ### Step-by-step Solution: 1. **Rewrite the Function**: Start with the given function: \[ f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta} \] Recall that \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \), so we can rewrite the function as: \[ f(\cos 4\theta) = \frac{2}{2 - \frac{1}{\cos^2 \theta}} = \frac{2 \cos^2 \theta}{2 \cos^2 \theta - 1} \] 2. **Set Up the Equation**: We want to find \( f\left(\frac{1}{3}\right) \). We need to find \( \theta \) such that: \[ \cos 4\theta = \frac{1}{3} \] 3. **Use the Cosine Double Angle Formula**: Recall that: \[ \cos 4\theta = 2\cos^2 2\theta - 1 \] Setting this equal to \( \frac{1}{3} \): \[ 2\cos^2 2\theta - 1 = \frac{1}{3} \] 4. **Solve for \( \cos^2 2\theta \)**: Rearranging gives: \[ 2\cos^2 2\theta = \frac{1}{3} + 1 = \frac{4}{3} \] Thus: \[ \cos^2 2\theta = \frac{2}{3} \] 5. **Find \( \cos 2\theta \)**: Taking the square root: \[ \cos 2\theta = \pm \sqrt{\frac{2}{3}} \] 6. **Substitute Back into the Function**: Now substitute \( \cos 2\theta \) back into the expression for \( f \): \[ f\left(\frac{1}{3}\right) = \frac{2 \cos^2 \theta}{2 \cos^2 \theta - 1} \] We know \( \cos^2 2\theta = \frac{2}{3} \), so: \[ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \] Thus: \[ \cos^2 \theta = \frac{1 + \sqrt{\frac{2}{3}}}{2} \quad \text{or} \quad \cos^2 \theta = \frac{1 - \sqrt{\frac{2}{3}}}{2} \] 7. **Calculate \( f\left(\frac{1}{3}\right) \)**: Substitute \( \cos^2 \theta \) into the function: \[ f\left(\frac{1}{3}\right) = \frac{2 \cdot \frac{1 + \sqrt{\frac{2}{3}}}{2}}{2 \cdot \frac{1 + \sqrt{\frac{2}{3}}}{2} - 1} \] Simplifying gives: \[ f\left(\frac{1}{3}\right) = \frac{1 + \sqrt{\frac{2}{3}}}{\sqrt{\frac{2}{3}}} \] This can be further simplified to: \[ f\left(\frac{1}{3}\right) = \frac{3 + \sqrt{6}}{2} \] ### Final Answer: Thus, the value of \( f\left(\frac{1}{3}\right) \) is: \[ f\left(\frac{1}{3}\right) = \frac{3 + \sqrt{6}}{2} \]

To solve the problem, we need to find the value of \( f\left(\frac{1}{3}\right) \) given that \( f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta} \) for \( \theta \) in the intervals \( (0, \frac{\pi}{4}) \) and \( (\frac{\pi}{4}, \frac{\pi}{2}) \). ### Step-by-step Solution: 1. **Rewrite the Function**: Start with the given function: \[ f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Matrix Match Type )|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta in (0,pi/4)uu(pi/4,pi/2) . Then the value(s) of f(1/3) is (are) (a) 1-sqrt(3/2) (b) 1+sqrt(3/2) (c) 1-sqrt(2/3) (d) 1+sqrt(2/3)

sec(pi/4+theta)sec(pi/4-theta)=2sec2theta

Knowledge Check

  • As theta increases from (pi)/(4) to (5pi)/(4) , the value of 4"cos"(1)/(2)theta

    A
    increases, and then decreases
    B
    decreases, and then increases
    C
    decreases throughout
    D
    increases throughout
  • Similar Questions

    Explore conceptually related problems

    5. int_0^(pi/4)sec^2theta d theta

    If (1-tan theta)(1+tan theta)sec^2 theta+2^(tan^2 theta)=0 then in the interval (-pi/2,pi/2), the value of theta is

    Prove that cosec(pi/4+theta/2)cosec(pi/4-theta/2)=2sec theta

    Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta

    If theta in [4 pi, 5pi] then cos^(-1)(cos theta) equals

    The solution of costheta.cos2theta.cos3theta=1/4,0 lt theta lt pi/4 is:

    If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is