Home
Class 12
MATHS
The value of sum(k=1)^(13) (1)/(sin((pi)...

The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6)))` is equal to

A

` 3-sqrt3`

B

`2(3-sqrt3)`

C

`2(sqrt3-1)`

D

`2(2+sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the summation: \[ S = \sum_{k=1}^{13} \frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)} \] ### Step 1: Rewrite the Expression We start by rewriting the expression to facilitate simplification. We can multiply and divide by \(\sin\left(\frac{\pi}{6}\right)\): \[ S = \sum_{k=1}^{13} \frac{\sin\left(\frac{\pi}{6}\right)}{\sin\left(\frac{\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)} \] ### Step 2: Use the Identity for Sine Using the identity \(\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]\), we can express the product of sines in the denominator: \[ \sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right) = \frac{1}{2} \left[\cos\left(\left(\frac{\pi}{4} + \frac{k\pi}{6}\right) - \left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)\right) - \cos\left(\left(\frac{\pi}{4} + \frac{k\pi}{6}\right) + \left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)\right)\right] \] ### Step 3: Simplify the Expression Now, we can simplify the expression further: \[ S = \sum_{k=1}^{13} \frac{2 \sin\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{4} + \frac{k\pi}{6}\right) - \cos\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)} \] ### Step 4: Use Cotangent Identity Using the cotangent identity, we can express the sum in terms of cotangent: \[ S = 2 \sum_{k=1}^{13} \cot\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) - \cot\left(\frac{\pi}{4} + \frac{k\pi}{6}\right) \] ### Step 5: Evaluate the Summation This expression is a telescoping series, which means most terms will cancel out: \[ S = 2 \left( \cot\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{4} + \frac{13\pi}{6}\right) \right) \] ### Step 6: Calculate Cotangent Values We know that \(\cot\left(\frac{\pi}{4}\right) = 1\) and we need to calculate \(\cot\left(\frac{\pi}{4} + \frac{13\pi}{6}\right)\). Calculating \(\frac{13\pi}{6}\): \[ \frac{13\pi}{6} = 2\pi + \frac{\pi}{6} \quad \text{(which is cotangent periodic)} \] Thus, \[ \cot\left(\frac{\pi}{4} + \frac{13\pi}{6}\right) = \cot\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \cot\left(\frac{5\pi}{12}\right) \] ### Step 7: Final Calculation Now, we know that: \[ \cot\left(\frac{5\pi}{12}\right) = 2 - \sqrt{3} \] Thus, \[ S = 2 \left(1 - (2 - \sqrt{3})\right) = 2\left(\sqrt{3} - 1\right) \] ### Final Answer The final value of the summation is: \[ \boxed{2(\sqrt{3} - 1)} \]

To solve the given problem, we need to evaluate the summation: \[ S = \sum_{k=1}^{13} \frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)} \] ### Step 1: Rewrite the Expression We start by rewriting the expression to facilitate simplification. We can multiply and divide by \(\sin\left(\frac{\pi}{6}\right)\): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Q. The value of is equal sum_(k=1)^13(1/(sin(pi/4+(k-1)pi/6)sin(pi/4+k pi/6)) is equal

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

sin^(-1)(cos((5pi)/4)) is equal to

sin^(-1)(sin((7pi)/4))

sin^(-1)(sin((9pi)/4))

sin^(-1)(sin ((7pi)/6))

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

Value of cos^(-1) cos(13pi)/(6) is