Home
Class 12
MATHS
The maximum value of the expression 1/(s...

The maximum value of the expression `1/(sin^2theta+3sinthetacostheta+5cos^2theta)` is………

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \[ E = \frac{1}{\sin^2 \theta + 3 \sin \theta \cos \theta + 5 \cos^2 \theta}, \] we will manipulate the expression step by step. ### Step 1: Rewrite the expression We start by rewriting the denominator: \[ E = \frac{1}{\sin^2 \theta + 3 \sin \theta \cos \theta + 5 \cos^2 \theta}. \] ### Step 2: Substitute \( \sin^2 \theta \) and \( \cos^2 \theta \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin^2 \theta \) as \( 1 - \cos^2 \theta \): \[ E = \frac{1}{(1 - \cos^2 \theta) + 3 \sin \theta \cos \theta + 5 \cos^2 \theta}. \] ### Step 3: Combine like terms This simplifies to: \[ E = \frac{1}{1 + 4 \cos^2 \theta + 3 \sin \theta \cos \theta}. \] ### Step 4: Use the double angle identity Now, we can use the double angle identity for sine, \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ E = \frac{1}{1 + 4 \cos^2 \theta + \frac{3}{2} \sin 2\theta}. \] ### Step 5: Set \( x = \cos^2 \theta \) Let \( x = \cos^2 \theta \), then \( \sin^2 \theta = 1 - x \) and \( \sin 2\theta = 2\sqrt{x(1-x)} \): \[ E = \frac{1}{1 + 4x + \frac{3}{2} \cdot 2\sqrt{x(1-x)}} = \frac{1}{1 + 4x + 3\sqrt{x(1-x)}}. \] ### Step 6: Find the maximum value of the denominator To find the maximum value of \( E \), we need to minimize the denominator: \[ D = 1 + 4x + 3\sqrt{x(1-x)}. \] ### Step 7: Differentiate and find critical points To minimize \( D \), we can differentiate it with respect to \( x \) and set the derivative to zero. However, a simpler approach is to analyze the expression: We can find the maximum value of \( 3\sqrt{x(1-x)} \) by using the AM-GM inequality: \[ \sqrt{x(1-x)} \leq \frac{x + (1-x)}{2} = \frac{1}{2}. \] Thus, \[ 3\sqrt{x(1-x)} \leq \frac{3}{2}. \] ### Step 8: Substitute back to find the minimum of \( D \) Substituting this back into \( D \): \[ D \geq 1 + 4x + \frac{3}{2}. \] To minimize \( D \), we can find the minimum value of \( x \) in the interval \( [0, 1] \). The minimum occurs at \( x = 0 \) or \( x = 1 \). ### Step 9: Evaluate \( D \) at critical points Evaluating at \( x = 0 \): \[ D = 1 + 0 + 0 = 1. \] Evaluating at \( x = 1 \): \[ D = 1 + 4(1) + 0 = 5. \] ### Step 10: Find the maximum value of \( E \) The minimum value of \( D \) is 1, thus the maximum value of \( E \) is: \[ E = \frac{1}{D} = \frac{1}{1} = 1. \] However, we need to consider the maximum value of \( D \) which occurs at the critical point. The maximum value of \( E \) is thus: \[ E = \frac{1}{5} = 0.2. \] ### Conclusion The maximum value of the expression \[ \frac{1}{\sin^2 \theta + 3 \sin \theta \cos \theta + 5 \cos^2 \theta} \] is \[ \boxed{2}. \]

To find the maximum value of the expression \[ E = \frac{1}{\sin^2 \theta + 3 \sin \theta \cos \theta + 5 \cos^2 \theta}, \] we will manipulate the expression step by step. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Matrix Match Type )|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

The maximum value of the expression sin theta cos^(2)theta(AA theta in [0, pi]) is

The value of the expression ((sin3theta)/sin theta)^2-((cos3theta)/costheta)^2 when theta=7.5^@

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

Find the maximum and minimum values of cos^2theta-6sinthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of the expression: a cos theta + b sin theta

Maximum value of the expression log_(3)(9-2 cos^(2)theta-4 sec^(2) theta) is equal to

Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos theta + 3 sin^(2) theta + 2 .