Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcospi/6=sin^2pi/6` in interval `((-pi)/2,pi/2)` is_________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cos\left(x + \frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{6}\right) = \sin^2\left(\frac{\pi}{6}\right) \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Simplify the equation We know that \( \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \). Thus, we can rewrite the equation as: \[ \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cdot \cos\left(x + \frac{\pi}{6}\right) \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} \] ### Step 2: Use the cosine addition formula Using the cosine addition formula, we have: \[ \cos\left(x + \frac{\pi}{6}\right) = \cos x \cos\left(\frac{\pi}{6}\right) - \sin x \sin\left(\frac{\pi}{6}\right) \] Substituting \( \cos\left(\frac{\pi}{6}\right) \) and \( \sin\left(\frac{\pi}{6}\right) \): \[ \cos\left(x + \frac{\pi}{6}\right) = \cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2} \] ### Step 3: Substitute back into the equation Now, substituting this back into the equation gives us: \[ \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cdot \left(\cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2}\right) \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} \] ### Step 4: Expand and simplify Expanding \( \cos^2\left(x + \frac{\pi}{6}\right) \) using the square of the cosine addition formula will be complex. Instead, we can use the identity \( a^2 + b^2 - 2ab = (a - b)^2 \) where \( a = \cos\left(x + \frac{\pi}{6}\right) \) and \( b = \cos\left(\frac{\pi}{6}\right) \). Thus, we can rewrite the left-hand side as: \[ \left(\cos\left(x + \frac{\pi}{6}\right) - \cos\left(\frac{\pi}{6}\right)\right)^2 + \cos^2 x = \frac{1}{4} \] ### Step 5: Set up the equation for solutions This leads us to find the values of \( x \) that satisfy: \[ \left(\cos\left(x + \frac{\pi}{6}\right) - \frac{\sqrt{3}}{2}\right)^2 + \cos^2 x = \frac{1}{4} \] ### Step 6: Solve for \( x \) Now, we will analyze the solutions. The equation can be solved by finding where the left-hand side equals \( \frac{1}{4} \). 1. **First solution**: \( x = 0 \) 2. **Second solution**: \( x = \frac{\pi}{3} \) ### Step 7: Count the solutions We need to check if these solutions lie within the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). Both \( x = 0 \) and \( x = \frac{\pi}{3} \) are valid solutions. ### Final Answer Thus, the number of solutions of the equation in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) is **2**. ---

To solve the equation \( \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cos\left(x + \frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{6}\right) = \sin^2\left(\frac{\pi}{6}\right) \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Simplify the equation We know that \( \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \). Thus, we can rewrite the equation as: \[ \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cdot \cos\left(x + \frac{\pi}{6}\right) \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcos(pi/6)=sin^2(pi/6) in interval ((-pi)/2,pi/2) is_________

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

The number of solutions of the equation cos^(2)((pi)/(3)cos x - (8pi)/(3))=1 in the interval [0,10pi] is

The number of roots of the equation sin(2x+pi/18) cos(2x-pi/9)=-1/4 in [0, 2pi] is

The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, x in [-(5pi)/(2),(5pi)/(2)] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Numerical value type)
  1. If log(0.5) sin x=1-log(0.5) cos x, then the number of solutions of x ...

    Text Solution

    |

  2. Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a ...

    Text Solution

    |

  3. Number of solutions (s) of the equation (sin x)/(cos 3x) +(sin 3x)/(co...

    Text Solution

    |

  4. Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=...

    Text Solution

    |

  5. Number of integral value(s) of m for which the equation sinx-sqrt(3)co...

    Text Solution

    |

  6. The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi...

    Text Solution

    |

  7. If cos4x=a0+a1cos^2x+a^2cos^4x is true for all values of x in R , the...

    Text Solution

    |

  8. Number of integral values of a for which the equation cos^2x-sinx+a=0 ...

    Text Solution

    |

  9. Number of roots of the equation 2^(tan(x-pi/4))-2(0. 25)^sin^(3((x-pi/...

    Text Solution

    |

  10. The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 ...

    Text Solution

    |

  11. Let k be sum of all x in the interval [0, 2pi] such that 3 cot^(2) x+8...

    Text Solution

    |

  12. If theta in [0,5pi]a n dr in R such that 2sintheta=r^4-2r^2+3 then th...

    Text Solution

    |

  13. If 2tan^2x-5secx=1 is satisfied by exactly seven distinct values of x ...

    Text Solution

    |

  14. If sinx+sinygeqcosacosxAA in R , then siny+cosa is equal to

    Text Solution

    |

  15. If sin(sinx+cosx)=cos(cosx-sinx), and largest possible value of sinx ...

    Text Solution

    |

  16. The number of solutions of the equation 1+cosx+cos2x+sinx+sin2x+sin3x=...

    Text Solution

    |

  17. the least value of 'a' for which the equation 2sqrt(a) sin^(2) x+sqrt(...

    Text Solution

    |

  18. The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y...

    Text Solution

    |

  19. Find the total no. of orderd pairs (x,y) satisfying x(sin^2 x+ 1/x^2)...

    Text Solution

    |

  20. Number of solutions of the equation cos 5x xx tan (6|x|)+sin 5x=0 lyin...

    Text Solution

    |