Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcospi/6=sin^2pi/6` in interval `((-pi)/2,pi/2)` is_________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cos\left(x + \frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{6}\right) = \sin^2\left(\frac{\pi}{6}\right) \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Simplify the equation We know that \( \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \). Thus, we can rewrite the equation as: \[ \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cdot \cos\left(x + \frac{\pi}{6}\right) \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} \] ### Step 2: Use the cosine addition formula Using the cosine addition formula, we have: \[ \cos\left(x + \frac{\pi}{6}\right) = \cos x \cos\left(\frac{\pi}{6}\right) - \sin x \sin\left(\frac{\pi}{6}\right) \] Substituting \( \cos\left(\frac{\pi}{6}\right) \) and \( \sin\left(\frac{\pi}{6}\right) \): \[ \cos\left(x + \frac{\pi}{6}\right) = \cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2} \] ### Step 3: Substitute back into the equation Now, substituting this back into the equation gives us: \[ \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cdot \left(\cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2}\right) \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} \] ### Step 4: Expand and simplify Expanding \( \cos^2\left(x + \frac{\pi}{6}\right) \) using the square of the cosine addition formula will be complex. Instead, we can use the identity \( a^2 + b^2 - 2ab = (a - b)^2 \) where \( a = \cos\left(x + \frac{\pi}{6}\right) \) and \( b = \cos\left(\frac{\pi}{6}\right) \). Thus, we can rewrite the left-hand side as: \[ \left(\cos\left(x + \frac{\pi}{6}\right) - \cos\left(\frac{\pi}{6}\right)\right)^2 + \cos^2 x = \frac{1}{4} \] ### Step 5: Set up the equation for solutions This leads us to find the values of \( x \) that satisfy: \[ \left(\cos\left(x + \frac{\pi}{6}\right) - \frac{\sqrt{3}}{2}\right)^2 + \cos^2 x = \frac{1}{4} \] ### Step 6: Solve for \( x \) Now, we will analyze the solutions. The equation can be solved by finding where the left-hand side equals \( \frac{1}{4} \). 1. **First solution**: \( x = 0 \) 2. **Second solution**: \( x = \frac{\pi}{3} \) ### Step 7: Count the solutions We need to check if these solutions lie within the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). Both \( x = 0 \) and \( x = \frac{\pi}{3} \) are valid solutions. ### Final Answer Thus, the number of solutions of the equation in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) is **2**. ---

To solve the equation \( \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cos\left(x + \frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{6}\right) = \sin^2\left(\frac{\pi}{6}\right) \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Simplify the equation We know that \( \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \). Thus, we can rewrite the equation as: \[ \cos^2\left(x + \frac{\pi}{6}\right) + \cos^2 x - 2 \cdot \cos\left(x + \frac{\pi}{6}\right) \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcos(pi/6)=sin^2(pi/6) in interval ((-pi)/2,pi/2) is_________

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

The number of solutions of the equation cos^(2)((pi)/(3)cos x - (8pi)/(3))=1 in the interval [0,10pi] is

The number of roots of the equation sin(2x+pi/18) cos(2x-pi/9)=-1/4 in [0, 2pi] is

The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, x in [-(5pi)/(2),(5pi)/(2)] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to