Home
Class 12
MATHS
Express the following in a + ib form: ...

Express the following in `a + ib` form: `((cos alpha + i sin alpha)^(4))/((sin beta + i cos beta)^(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \(\frac{(\cos \alpha + i \sin \alpha)^4}{(\sin \beta + i \cos \beta)^5}\) in the form \(a + ib\), we can follow these steps: ### Step 1: Rewrite using Euler's Formula Using Euler's formula, we know that: \[ \cos \theta + i \sin \theta = e^{i\theta} \] Thus, we can rewrite the expression as: \[ \frac{(\cos \alpha + i \sin \alpha)^4}{(\sin \beta + i \cos \beta)^5} = \frac{(e^{i\alpha})^4}{(e^{i(\frac{\pi}{2} - \beta)})^5} \] This simplifies to: \[ \frac{e^{i4\alpha}}{e^{i(5(\frac{\pi}{2} - \beta))}} = \frac{e^{i4\alpha}}{e^{i(\frac{5\pi}{2} - 5\beta)}} \] ### Step 2: Simplify the Exponent Now, we can simplify the exponent: \[ e^{i4\alpha} \cdot e^{-i(\frac{5\pi}{2} - 5\beta)} = e^{i(4\alpha - (\frac{5\pi}{2} - 5\beta))} \] This can be rewritten as: \[ e^{i(4\alpha + 5\beta - \frac{5\pi}{2})} \] ### Step 3: Convert Back to Trigonometric Form Using Euler's formula again, we can express this in the form \(a + ib\): \[ e^{i(4\alpha + 5\beta - \frac{5\pi}{2})} = \cos(4\alpha + 5\beta - \frac{5\pi}{2}) + i\sin(4\alpha + 5\beta - \frac{5\pi}{2}) \] ### Step 4: Simplify the Angles We know that \(\cos(x - \frac{5\pi}{2}) = \sin x\) and \(\sin(x - \frac{5\pi}{2}) = -\cos x\). Thus: \[ \cos(4\alpha + 5\beta - \frac{5\pi}{2}) = \sin(4\alpha + 5\beta) \] \[ \sin(4\alpha + 5\beta - \frac{5\pi}{2}) = -\cos(4\alpha + 5\beta) \] ### Step 5: Final Expression Putting it all together, we have: \[ \sin(4\alpha + 5\beta) - i\cos(4\alpha + 5\beta) \] Thus, in the form \(a + ib\): \[ a = \sin(4\alpha + 5\beta), \quad b = -\cos(4\alpha + 5\beta) \] ### Final Result The expression in the form \(a + ib\) is: \[ \sin(4\alpha + 5\beta) - i\cos(4\alpha + 5\beta) \]

To express the given expression \(\frac{(\cos \alpha + i \sin \alpha)^4}{(\sin \beta + i \cos \beta)^5}\) in the form \(a + ib\), we can follow these steps: ### Step 1: Rewrite using Euler's Formula Using Euler's formula, we know that: \[ \cos \theta + i \sin \theta = e^{i\theta} \] Thus, we can rewrite the expression as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.6|10 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Knowledge Check

  • Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

    A
    `-1`
    B
    ` sin alpha- sin beta `
    C
    ` sin beta `
    D
    ` 0`
  • Similar Questions

    Explore conceptually related problems

    Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

    Find the distance between the following pairs of points. i) (4,5),(,5,4) ii) (-3,1), (3,2) iii) (a cos alpha, asin alpha), (a cos beta, a sin beta)

    Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

    Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

    The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

    If cos(alpha+beta)=0 then sin(alpha+2beta)=

    If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =