Home
Class 12
MATHS
For z(1)=""^(6)sqrt((1-i)//(1+isqrt(3)))...

For `z_(1)=""^(6)sqrt((1-i)//(1+isqrt(3))),z_(2)=""^(6)sqrt((1-i)//(sqrt(3)+i))`, `z_(3)= ""^(6)sqrt((1+i) //(sqrt(3)-i))`, prove that `|z_(1)|=|z_(2)|=|z_(3)|`

Text Solution

AI Generated Solution

To prove that \( |z_1| = |z_2| = |z_3| \), we will calculate the modulus of each complex number step by step. ### Step 1: Calculate \( |z_1| \) Given: \[ z_1 = \sqrt[6]{\frac{1 - i}{1 + i\sqrt{3}}} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.5|12 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(2)-z_(1)| gt ||z_(2)|- |z_(1)||

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)| lt |z_(1)| + |z_(2)|

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1)z_(2) |= |z_(1)| |z_(2)|

If z=(3-sqrt(7)i) , then find |z^(-1)| .

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |-z_(1)| = |z_(1)|