Home
Class 12
MATHS
Calculate the greatest and least values ...

Calculate the greatest and least values of the function `f(x)=(x^4)/(x^8+2x^6-4x^4+8x^2+16)`

Text Solution

Verified by Experts

`(1)/(f(x)) = (x^(4) + (16)/(x^(4))) + 2 (x^(2) + (4)/(x^(2))) - 4`
Now, `A.M ge G.M`
`implies x^(4) + (16)/(x^(4)) ge 8` and `x^(2) + (4)/(x^(2)) ge 4`
`implies (1)/(f(x)) ge 12 implies f(x) le (1)/(12)`
Again using `A.M ge G.M` we have
`(2x^(6) + 8 x^(2))/(2) ge 4x^(4)`
or `2 x^(6) + 8 x^(2) - 4 x^(4) ge 4 x^(4) ge 0`
or `x^(8) + 2x^(6) - 4x^(4) + 8x^(2) + 16 lt 0`
Also, `x^(4) ge 0`
`implies (x^(4))/(x^(8) + 2x^(6) - 4x^(8) + 8x^(2) + 16) ge 0`
`implies f(x) ge 0`
Hence, the greatest value is 1/12 and the least value is 0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 4|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 5|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 2|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

Difference between the greatest and the least values of the function f(x)=x(ln x-2) on [1,e^2] is

The range of the function y=(x+2)/(x^2-8x-4)

The difference between the greatest between the greatest and least value of the function f(x)=sin2x-x" on"[-pi//2,pi//6] , is

The function f(x) = (4-x^(2))/(4x-x^(3)) is

For xgeq0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)), is

the function f(x)=(x^2+4x+30)/(x^2-8x+18) is not one-to-one.

The value of c in the Lagrange's mean value theorem for the function f(x)=x^(3)-4x^(2)+8x+11 , when x in [0, 1] is :

For xge 0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)) , is ________.

Separate the intervals of monotonocity of the function: f(x)=3x^4-8x^3-6x^2+24 x+7

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is