Home
Class 12
MATHS
If A is the area and 2s is the sum of th...

If `A` is the area and `2s` is the sum of the sides of a triangle, then `Alt=(s^2)/4` (b) `Alt=(s^2)/(3sqrt(3))` `2RsinAsinBsinC` (d) `non eoft h e s e`

A

`Ale (s^2)/(4)`

B

`Ale(s^2)/(3sqrt(3))`

C

`Alt (s^2)/(sqrt(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B

We have
`2s = a + b + c`
`A^(2) = s (s - a) (s - b)(s - c)`
Now,
`A.M. ge G.M`
`implies (s + (s - a) + (s - b) + (s - c))/(4) ge [s(s-a)(s-b)(s-c)]^(1//4)`
`implies (4s - 2s)/(4) ge [A^(2)]^(1//4)`
`implies s//2 ge A^(1//2)` or `A le s^(2)//4`
Also,
`((s - a) + (s - b) + (s - c))/(3) ge [(s - a) (s - b) (s - c)]^(1//3)`
`implies (s)/(3) ge [(A^(2))/(s)]^(1//3)`
or `(A^(2))/(s) le (s^(3))/(27)`
or `A le (s^(2))/(3sqrt(3))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Numerical value type|10 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If triangle is the area and 2s is the perimeter of triangleABC , then prove that triangle le s^(2)/(3sqrt(3))

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then (a) a >0 (b) a<-sqrt(3) (c) -sqrt(3)<=a<= sqrt(3) (d) non eoft h e s e

If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then (a) a >0 (b) a<-sqrt(3) (c) -sqrt(3)< a< sqrt(3) (d) non eoft h e s e

The maximum area of the rectangle whose sides pass through the vertices of a given rectangle of sides aa n db is (a) 2(a b) (b) 1/2(a+b)^2 (c) 1/2(a^2+b^2) (d) non eoft h e s e

In A B C , the median A D divides /_B A C such that /_B A D :/_C A D=2:1 . Then cos(A/3) is equal to (sinB)/(2sinC) (b) (sinC)/(2sinB) (2sinB)/(sinC) (d) non eoft h e s e

Using vectors: Prove that if a,b,care the lengths of three sides of a triangle then its area Delta is given by Delta= sqrt(s(s-a)(s-b)(s-c)) where 2s=a+b+c

Let alt=blt=c be the lengths of the sides of a triangle. If a^2+b^2< c^2, then prove that angle C is obtuse .

If the line 2x-2y+lambda=0 is a secant to the parabola x^2=-8y , then lambda lies in the interval (4,oo) (b) (-oo,4) (c) (0,4) (d) Non eoft h e s e

x gt0 , then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s