Home
Class 12
MATHS
If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) the...

If `f(x)=x((e^(|x|+[x])-2)/(|x|+[x]))` then (where [.] represent the greatest integer function)

A

`underset(xrarr0^(+))(lim)f(x)=-1`

B

`underset(xrarr0^(-))(lim)f(x)=0`

C

`underset(xrarr0)(lim)f(0)=-1`

D

`underset(xrarr0)(lim)f(x)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits of the function \( f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \) as \( x \) approaches 0 from the positive and negative sides. Here, \([x]\) denotes the greatest integer function. ### Step 1: Evaluate the limit as \( x \to 0^+ \) 1. **Substitute into the function**: \[ f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \] For \( x \to 0^+ \): - \( |x| = x \) - \( [x] = 0 \) (since \( x \) is positive and less than 1) Thus, the function simplifies to: \[ f(x) = x \frac{e^{x + 0} - 2}{x + 0} = x \frac{e^x - 2}{x} \] 2. **Simplify the expression**: \[ f(x) = e^x - 2 \] 3. **Take the limit**: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (e^x - 2) = e^0 - 2 = 1 - 2 = -1 \] ### Step 2: Evaluate the limit as \( x \to 0^- \) 1. **Substitute into the function**: For \( x \to 0^- \): - \( |x| = -x \) - \( [x] = -1 \) (since \( x \) is negative and greater than -1) Thus, the function simplifies to: \[ f(x) = x \frac{e^{-x - 1} - 2}{-x - 1} \] 2. **Simplify the expression**: \[ f(x) = x \frac{e^{-x - 1} - 2}{-x - 1} \] 3. **Take the limit**: As \( x \to 0^- \): \[ f(x) = x \frac{e^{-1} e^x - 2}{-1} = -x (e^{-1} e^x - 2) \] Evaluating the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -x (e^{-1} e^x - 2) = 0 \cdot (e^{-1} - 2) = 0 \] ### Final Results - \( \lim_{x \to 0^+} f(x) = -1 \) - \( \lim_{x \to 0^-} f(x) = 0 \) ### Conclusion Based on the evaluations: - Option 1: \( \lim_{x \to 0^+} f(x) = -1 \) is correct. - Option 2: \( \lim_{x \to 0^-} f(x) = 0 \) is correct.

To solve the problem, we need to evaluate the limits of the function \( f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \) as \( x \) approaches 0 from the positive and negative sides. Here, \([x]\) denotes the greatest integer function. ### Step 1: Evaluate the limit as \( x \to 0^+ \) 1. **Substitute into the function**: \[ f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

Let f(x) = [x] and [] represents the greatest integer function, then

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |