Home
Class 12
MATHS
If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) the...

If `f(x)=x((e^(|x|+[x])-2)/(|x|+[x]))` then (where [.] represent the greatest integer function)

A

`underset(xrarr0^(+))(lim)f(x)=-1`

B

`underset(xrarr0^(-))(lim)f(x)=0`

C

`underset(xrarr0)(lim)f(0)=-1`

D

`underset(xrarr0)(lim)f(x)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits of the function \( f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \) as \( x \) approaches 0 from the positive and negative sides. Here, \([x]\) denotes the greatest integer function. ### Step 1: Evaluate the limit as \( x \to 0^+ \) 1. **Substitute into the function**: \[ f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \] For \( x \to 0^+ \): - \( |x| = x \) - \( [x] = 0 \) (since \( x \) is positive and less than 1) Thus, the function simplifies to: \[ f(x) = x \frac{e^{x + 0} - 2}{x + 0} = x \frac{e^x - 2}{x} \] 2. **Simplify the expression**: \[ f(x) = e^x - 2 \] 3. **Take the limit**: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (e^x - 2) = e^0 - 2 = 1 - 2 = -1 \] ### Step 2: Evaluate the limit as \( x \to 0^- \) 1. **Substitute into the function**: For \( x \to 0^- \): - \( |x| = -x \) - \( [x] = -1 \) (since \( x \) is negative and greater than -1) Thus, the function simplifies to: \[ f(x) = x \frac{e^{-x - 1} - 2}{-x - 1} \] 2. **Simplify the expression**: \[ f(x) = x \frac{e^{-x - 1} - 2}{-x - 1} \] 3. **Take the limit**: As \( x \to 0^- \): \[ f(x) = x \frac{e^{-1} e^x - 2}{-1} = -x (e^{-1} e^x - 2) \] Evaluating the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -x (e^{-1} e^x - 2) = 0 \cdot (e^{-1} - 2) = 0 \] ### Final Results - \( \lim_{x \to 0^+} f(x) = -1 \) - \( \lim_{x \to 0^-} f(x) = 0 \) ### Conclusion Based on the evaluations: - Option 1: \( \lim_{x \to 0^+} f(x) = -1 \) is correct. - Option 2: \( \lim_{x \to 0^-} f(x) = 0 \) is correct.

To solve the problem, we need to evaluate the limits of the function \( f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \) as \( x \) approaches 0 from the positive and negative sides. Here, \([x]\) denotes the greatest integer function. ### Step 1: Evaluate the limit as \( x \to 0^+ \) 1. **Substitute into the function**: \[ f(x) = x \frac{e^{|x| + [x]} - 2}{|x| + [x]} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

Let f(x) = [x] and [] represents the greatest integer function, then